
 

 

 

Advanced Analytics for Train Delay Prediction Systems by 

Including Exogenous Weather Data 

 

L. Oneto, E. Fumeo, G. Clerico, R. Canepa, F. Papa, 

C. Dambra, N. Mazzino, and D. Anguita 

 

Accepted Manuscript version 

© 2016. This manuscript version is made available under 

the CC-BY-NC-ND 4.0 license 

http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

Please note that DOI is not available yet, it will be added as soon as possible 

http://creativecommons.org/licenses/by-nc-nd/4.0/


Advanced Analytics for Train Delay Prediction Systems
by Including Exogenous Weather Data

Luca Oneto, Member, IEEE, Emanuele Fumeo, Giorgio Clerico, Renzo Canepa,
Federico Papa, Carlo Dambra, Nadia Mazzino, and Davide Anguita, Senior Member, IEEE

Abstract— State-of-the-art train delay prediction systems nei-
ther exploit historical data about train movements, nor exoge-
nous data about phenomena that can affect railway operations.
They rely, instead, on static rules built by experts of the
railway infrastructure based on classical univariate statistics.
The purpose of this paper is to build a data-driven train delay
prediction system that exploits the most recent analytics tools.
The train delay prediction problem has been mapped into a
multivariate regression problem and the performance of kernel
methods, ensemble methods and feed-forward neural networks
have been compared. Firstly, it is shown that it is possible to
build a reliable and robust data-driven model based only on
the historical data about the train movements. Additionally,
the model can be further improved by including data coming
from exogenous sources, in particular the weather information
provided by national weather services. Results on real world
data coming from the Italian railway network show that the
proposal of this paper is able to remarkably improve the current
state-of-the-art train delay prediction systems. Moreover, the
performed simulations show that the inclusion of weather
data into the model has a significant positive impact on its
performance.

I. INTRODUCTION

Current research trends in railway transportation systems
have shown an increasing interest in the application of
advanced data analytics to sector specific problems, such
as condition based maintenance of railway assets [1], [2],
automatic visual inspection systems [3], network capacity
estimation [4], optimization for energy-efficient railway op-
erations [5], and the like. In particular, this paper focuses on
predicting train delays in order to improve traffic manage-
ment and dispatching using advanced analytics techniques
able to integrate heterogeneous data.

Delays can have various causes: disruptions in the opera-
tions flow, accidents, malfunctioning or damaged equipment,
construction work, repair work, and weather conditions like
snow and ice, floods, and landslides, to name just a few.
Although trains should respect a fixed schedule called “nom-
inal timetable”, delays occur daily and can affect negatively
railway operations, causing service disruptions and losses in
the worst cases.

Rail Traffic Management Systems (TMSs) [6] have been
developed to support managing the inherent complexity of

Luca Oneto, Emanuele Fumeo, Giorgio Clerico, and
Davide Anguita are with the DIBRIS, University of
Genoa, Via Opera Pia 13, I-16145, Genoa, Italy (email:
{luca.oneto,emanuele.fumeo,giorgio.clerico,davide.anguita}@unige.it).
Renzo Canepa is with Rete Ferroviaria Italiana S.p.A., Via Don Vincenzo
Minetti 6/5, I-16126, Genoa, Italy (email: r.canepa@rfi.it). Federico Papa,
Carlo Dambra, and Nadia Mazzino are with Ansaldo STS S.p.A., Via
Paolo Mantovani 3-5, I-16151, Genova, Italy (email: {federico.papa,
carlo.dambra.ext, nadia.mazzino}@ansaldo-sts.com).

rail services and networks by providing an integrated and
holistic view of operational performance, enabling high lev-
els of rail operations efficiency. By providing accurate train
delay predictions to TMSs, it is possible to greatly improve
traffic management and dispatching in terms of:

• Passenger information systems, increasing the percep-
tion of the reliability of train passenger services and, in
case of service disruptions, providing valid alternatives
to passengers looking for the best train connections [7].

• Freight tracking systems, estimating goods’ time to
arrival correctly so to improve customers’ decision-
making processes.

• Timetable planning, providing the possibility of updat-
ing the train trip scheduling to cope with recurrent
delays [8].

• Delay management (rescheduling), allowing traffic man-
agers to reroute trains so to utilize the railway network
in a better way [9].

Due to its key role, the TMS stores the information about
every “train movement”, i.e. every train arrival and departure
timestamp at “checkpoints” monitored by signaling systems
(e.g. a station, a switch, etc.). Datasets composed of train
movements records have been used as fundamental data
sources for every work addressing the problem of train delay
prediction. For instance, Milinkovic et al. [10] developed a
Fuzzy Petri Net (FPN) model to estimate train delays based
both on expert knowledge and on historical data. Berger et al.
[11] presented a stochastic model for delay propagation and
forecasts based on directed acyclic graphs. S. Pongnumkul
et al. [12] worked on data-driven models for train delay
predictions, treating the problem as a time series forecast
one. Their system was based on ARIMA and k-NN models,
although their work reports the application of their models
over a limited set of data from a few trains. Last but not least,
Goverde, Keckman et al. [13], [14], [15], [16] developed
an intensive research in the context of delay prediction and
propagation by using process mining techniques based on
innovative timed event graphs, on historical train movements
data, and on expert knowledge about railway infrastructure.

However, these models are based on classical univariate
statistics, and they only consider train movements data in
order to make their predictions. Other factors affecting rail-
way operations (e.g. drivers behaviour, passengers volumes,
strikes and holidays, etc.) are indirectly considered (e.g.
specific models for weekends), or even not considered, and
in some cases they cannot be easily integrated in the models.
Instead, using advanced analytics algorithms (like kernel



methods, neural networks, ensemble methods, etc.), it is
possible to perform a multivariate analysis over data coming
from different sources but related to the same phenomena,
pursuing the idea that the more information is available for
the creation of the model, the better the performance of the
model will be.

For these reasons, this paper investigates the problem of
predicting train delays by exploiting advanced data analytics
techniques based on multivariate statistical concepts that
allow data-driven models to include heterogeneous data. The
proposed solution considers the problem of train delays as
a time series forecast problem, where every train movement
represents an event in time. Train movements data identifies
for each train a dataset of delay profiles from which it is
possible to build a set of data-driven models that, working
together, perform a regression analysis on the past delay
profiles and consequently predict future ones. Moreover, this
solution can be extended by including data about weather
conditions related to the itineraries of the considered trains,
as an example of the integration of exogenous variables into
the forecasting models. Three different algorithms are used to
solve the problem, i.e. Extreme Learning Machines (ELM),
Kernel Regularized Least Squares (KRLS) and Random
Forests (RF), and their performance are compared. Moreover,
in order to tune hyperparameters of the aforementioned
algorithms, the Nonparametric Bootstrap (BTS) procedure
has been used. The described approach and the prediction
system performance have been validated based on the real
historical data provided by Rete Ferroviaria Italiana (RFI),
the Italian Infrastructure Manager (IM) that controls all the
traffic of the Italian railway network, and on historical data
about weather conditions and forecasts, which is publicly
available from the Italian weather services. For this purpose,
a set of novel Key Performance Indicators (KPIs) agreed with
RFI has been designed and used. Several months or train
movements records and weather conditions data from the
entire Italian railway network have been exploited, showing
that the new proposed methodology outperforms the current
technique used by RFI to predict train delays in terms of
overall accuracy.

II. TRAIN DELAY PREDICTION PROBLEM:
THE ITALIAN CASE

A railway network can be considered as a graph where
nodes represent a series of checkpoints connected one
to each other. Any train that runs over the network
follows an itinerary composed of nc checkpoints C =
{C1, C2, · · · , Cnc}, which is characterized by a station of
origin, a station of destination, some stops and some transits
at checkpoints in between (see Figure 1). For any checkpoint
C, a train should arrive at time tCA e and should depart at time
tCD, defined in the nominal timetable. Usually time references
included in the nominal timetable are approximated with
a precision of 30 seconds or 1 minute. The actual arrival
and departure times of a train are defined as t̂CA and t̂CD.
The difference between the time references included in the
nominal timetable and the actual times, either of arrival
(t̂CA − tCA) or of departure (t̂CD − tCD), is defined as delay.

Fig. 1: A railway network depicted as a graph, including a
train itinerary from checkpoint M to checkpoint Q

Moreover, if the delay is greater than 30 seconds or 1 minute,
then a train is considered as “delayed train”. Note that, for the
origin station there is no arrival time, while for the destination
station there is no departure time. A dwell time is defined
as the difference between the departure time and the arrival
time for a fixed checkpoint (t̂CD− t̂CA), while a running time is
defined as the amount of time needed to depart from the first
of two subsequent checkpoints and to arrive to the second
one (t̂C+1

A − t̂CD).
In order to tackle the problem of train delay predictions,

the following solution is proposed. Taking into account the
itinerary of a train, the goal is to be able to predict the
delays that will affect that specific train for each subsequent
checkpoint with respect to the last one in which the train
has transited. To make it general, for each checkpoint Ci,
where i ∈ {0, 1, · · · , nc}, the prediction system must be able
to predict the train delays for each subsequent checkpoint
{Ci+1, Ci+2, · · · , Cnc

}. Note that C0 is a virtual checkpoint
that reproduces the condition of a train that still has to depart
from its origin. In this solution, the train delay prediction
problem is treated as a time series forecast problem, where
a set of predictive models perform a regression analysis over
the delay profiles for each train, for each checkpoint Ci
of the itineraries of these trains, and for each subsequent
checkpoint Cj with j ∈ {i + 1, i + 2, · · · , nc}. Figure 2
shows the data needed to build forecasting models based on
the railway network depicted in Figure 1. Basically, based
on the state of the network between time t − δ− and time
t, the proposed system must be able to predict train delays
occurring from time t and t+ δ+, and this is nothing but a
classical regression problem.

Additionally, this solution takes into account information
about weather conditions that could influence the ordinary
train operations. For example, weather conditions could
influence the passengers flow and consequently the dwell
times at each station. Usually, for a particular area, it is
possible to access to a big number of weather stations,
and for any weather station, it is possible to retrieve the
measured values and the forecasted values (for different time
horizons) of many variables, such as atmospheric pressure,
solar radiation, temperature, humidity, wind and rainfall.
Since the granularity of these weather stations is quite fine,
it is possible retrieve also the actual and forecasted weather



Fig. 2: Data for the train delay forecasting models for the
network of Figure 1

Fig. 3: Weather Informations

conditions for all the checkpoints by looking for the closest
one (as depicted in Figure 3). The regression problem can
be easily extended to include also historical weather data.

To sum up, for each train characterized by a specific
itinerary of nc checkpoints, nc models have to be built for
C0, (nc − 1) for C1, and so on. Consequently, the total
number of models to be built for each train can be calculated
as nc+(nc−1)+ · · ·+1 = nc(nc − 1)/2. These models work
together in order to make possible to estimate the delays of
a particular train during its entire itinerary.

Considering the case of the Italian railway network, RFI
controls every day approximately 10 thousand trains trav-
elling along the national railway network. Every train is
characterized by an itinerary composed of approximately 12
checkpoints, which means that the number of train move-
ments is greater than or equal to 120 thousands per day. This
results in roughly one message per second and more than
10 GB of messages per day to be stored. Note that every
time that a complete set of messages describing the entire
planned itinerary of a particular train for one day is retrieved,
the predictive models associated with that train must be
retrained. Since for each train at least nc(nc − 1)/2 ≈ 60
models have to be built, the number of models that has to

be retrained every day in the Italian case is greater than or
equal to 600 thousands. Note that all these training phases
can be done during the night when just few trains are flowing
through the network. This allows both to have always the best
performing models, as required by RFI, which exploit all the
data available, and both to deal with the small or big changes
in the timetables that occur during the year.

III. ADVANCED ANALYTICS FOR
TRAIN DELAY PREDICTION SYSTEMS

This section deals with the problem of building a data-
driven train delay prediction system able to integrate het-
erogenous data. In particular, focusing on the prediction of
the delay of a single train, there are a variable of interest
(i.e. the delay profile of a train along its itinerary) and other
possible correlated variables (e.g. information about other
trains travelling on the network, weather conditions, etc.).
The goal is to predict the delay of that train at a particular
time in the future t = t + δ+, i.e. at one of its follow-
ing checkpoints. For some of the correlated variables (e.g.
weather conditions), the forecasted values could be available
in addition to historical values, i.e. forecasts at future times
made at past times. Given the previous observations, train
delay prediction can be attributed into a classical multivariate
regression problem [17], [18].

In the conventional regression framework [19], [20] a set
of data Dn = {(x1, y1), . . . , (xn, yn)}, with xi ∈ X ∈ Rd
and yi ∈ Y ∈ R, are available from the automation system.
The goal of the authors is to identify the unknown model
S : X → Y through a model M : X → Y chosen by an
algorithm AH defined by its set of hyperparameters H. The
accuracy of the model M in representing the unknown sys-
tem S can be evaluated with reference to different measures
of accuracy [21], [22]. In the case reported by this paper,
they have been defined together with RFI experts, and have
been reported in Section IV.

In order to map the train delay prediction problem into a
multivariate regression model, let’s consider the train of inter-
est Tk, which is at checkpoint CTk

i with i ∈ {0, 1, · · · , nc}
at time t0. The goal is to predict the delay at one of its
subsequent checkpoints CTk

j , with j ∈ {i+1, i+2, · · · , nc}.
Consequently, the input space X will be composed by:
• the weather conditions, the delays, the dwell times and

the running times for Tk for t ∈ [t0 − δ−, t0]
• the weather conditions, the delays, the dwell times and

the running times for all the other trains Tw with w 6= k
which were running over the railway network for t ∈
[t0 − δ−, t0]

• the values of weather conditions that had been fore-
casted at past times, for all the subsequent checkpoints
of all the trains (including Tk) traveling along the
network for t ∈ [t0, t0 + δ+]

Concerning the output space Y , it is composed by CTk
j with

j ∈ {i + 1, i + 2, · · · , nc} where t0 + δ+ is equal to the
nominal timetable of Tk for every CTk

j .
Figure 4 shows a graphical representation of the mapping

of the the train delay prediction problem into a multivariate
regression problem.



Fig. 4: Mapping of the train delay problem into a multivariate
regression problem.

A. Kernel Methods

Kernel methods are a family of machine learning al-
gorithms that represent the solution in terms of pairwise
similarity between input examples, while they do not work
on an explicit representation of the examples [23]. Kernel
methods consistently outperformed previous generations of
learning techniques because they provide a flexible and
expressive learning framework that has been successfully
applied to a wide range of real world problems. It is worth to
mention that, recently, novel algorithms have increased their
competitiveness against them [24], for example Deep Neural
Networks [25] and Ensemble Methods [26].

Since the target is a regression problem [19], [27], [28]
aiming at building M, the purpose is to find the best approx-
imating function h(x), where h : Rd → R, of the system S.
During the training phase, the quality of the regressor h(x) is
measured according to a loss function `(h(x), y) [29], [30],
which calculates the discrepancy between the true and the
estimated output, respectively y and ŷ = h(x). The empirical
error then computes the average discrepancy, reported by a
model over Dn:

L̂n(h) =
1

n

n∑
i=1

`(h(xi), yi). (1)

A simple criterium for selecting the final model during
the training phase consists in choosing the approximating
function that minimizes the empirical error L̂n(h): this
approach is known as Empirical Risk Minimization (ERM)
[31]. However, ERM is usually avoided in ML as it leads to
severely overfitting the model on the training dataset [19],
[32], [33], [34]. A more effective approach consists in the
minimisation of a cost function where the trade-off between
accuracy on the training data and a measure of the complexity
of the selected approximating function is implemented [35],
[36]:

h∗ : min
h

L̂n(h) + λ C(h). (2)

where C(·) is a complexity measure which depends on the
selected ML approach and λ is a hyperparameter that must be

set a priori and regulates the trade-off between the overfitting
tendency, related to the minimisation of the empirical error,
and the underfitting tendency, related to the minimization of
C(·). This approach is known as Structural Risk Minimization
(SRM) [19]. The optimal value for λ is problem-dependent,
and tuning this hyperparameter is a non-trivial task [32] and
will be faced later in this section.

The Kernelized Regularized Least Squares (KRLS) [37],
[38], [39] is the approach here adopted. In KRLS, approxi-
mation functions are defined as

h(x) = wTφ(x), (3)

where a non-linear mapping φ : Rd → RD, D � d, is
applied so that non-linearity is pursued while still coping
with linear models.

For KRLS, Problem (2) is defined as follows. The com-
plexity of the approximation function is measured as

C(h) = ‖w‖22 (4)

i.e. the Euclidean norm of the set of weights describing the
regressor, which is a quite standard complexity measure in
ML [35]. Regarding the loss function, the MSE is adopted:

L̂n(h) =
1

n

n∑
i=1

`(h(xi), yi) =
1

n

n∑
i=1

[h(xi)− yi]2 . (5)

Consequently, Problem (2) can be reformulated as:

w∗ : min
w

1

n

n∑
i=1

[
wTφ(x)− yi

]2
+ λ‖w‖22. (6)

By exploiting the Representer Theorem [40], the solution
h∗ of the RLS Problem (6) can be expressed as a linear
combination of the samples projected in the space defined
by φ:

h∗(x) =

n∑
i=1

αiφ(xi)
Tφ(x). (7)

It is worth underlining that, according to the kernel trick
[41], [27], it is possible to reformulate h∗(x) without an
explicit knowledge of φ by using a proper kernel function
K(xi,x) = φ(xi)

Tφ(x):

h∗(x) =

n∑
i=1

αiK(xi,x). (8)

Among the several kernel functions which can be found in
literature [41], [27], the Gaussian kernel is often used as it
enables learning every possible function [42], [43]:

K(xi,xj) = e−γ‖xi−xj‖22 , (9)

where γ is an hyperparameter which regulates the non-
linearity of the solution [43] and must be set a priori,
analogously to λ. Small values of γ lead the optimisation
to converge to simpler functions h(x) (note that for γ → 0
the optimisation converges to a linear regressor), while high
values of γ allow higher complexity of h(x).



Finally, the KRLS Problem (6) can be reformulated by
exploiting kernels:

α∗ : min
α

1

n
‖Kα− y‖22 + λαTKα (10)

where y = [y1, · · · , yn]T , α = [α1, · · · , αn]T , K is a matrix
such that Ki,j = Kji = K(xj ,xi), and I ∈ Rn×n is the
Identity matrix.

By setting the derivative with respect to α equal to zero,
α can be found by solving the following linear system:

(K + nλI)α∗ = y. (11)

Effective solvers have been developed throughout the years,
allowing to efficiently solve the problem of Eq. (11) even
when very large sets of training data are available [44], [45].

B. Extreme Learning Machine

The ELM approach [46], [47], [48] was introduced to over-
come problems posed by back-propagation training algorithm
[49], [50]: potentially slow convergence rates, critical tuning
of optimization parameters, and presence of local minima
that call for multi-start and re-training strategies. ELM was
originally developed for the single-hidden-layer feedforward
neural networks [51], [52] and then generalized in order to
cope with cases where ELM is not neuron alike:

h(x) =

h∑
i=1

wigi(x). (12)

where gi : Rd → R, i ∈ {1, · · · , h} is the hidden-layer
output corresponding to the input sample x ∈ Rd and w ∈
Rh is the output weight vector between the hidden layer and
the output layer.

In this case, the input layer has d neurons and connects to
the hidden layer (having h neurons) through a set of weights
W ∈ Rh×(0,··· ,d) and a nonlinear activation function, ϕ :
R→ R. Thus the i-th neuron response to an input stimulus
x is:

gi(x) = ϕ

Wi,0 +

d∑
j=1

Wi,jxj

 . (13)

Note that Eq. (13) can be further generalized to include a
wider class of functions [53], [51], [52]; therefore, the re-
sponse of a neuron to an input stimulus x can be generically
represented by any nonlinear piecewise continuous function
characterized by a set of parameters. In ELM, the parameters
W are set randomly. A vector of weighted links, w ∈ Rh,
connects the hidden neurons to the output neuron without
any bias. The overall output function, f(x), of the network
is:

f(x)=

h∑
i=1

wiϕ

Wi,0+

d∑
j=1

Wi,jxj

=

h∑
i=1

wiϕi(x). (14)

It is convenient to define an activation matrix, A ∈ Rn×h,
such that the entry Ai,j is the activation value of the j-th

hidden neuron for the i-th input pattern. The A matrix is:

A =

[
ϕ1(x1) ··· ϕh(x1)

...
. . .

...
ϕ1(xn) ··· ϕh(xn)

]
. (15)

In the ELM model the weights W are set randomly and are
not subject to any adjustment, and the quantity w in Eq. (14)
is the only degree of freedom. Hence, the training problem
reduces to minimization of the convex cost:

w∗ = argmin
w
‖Aw − y‖2 . (16)

A matrix pseudo-inversion yields the unique L2 solution, as
proven in [51], [54]:

w∗ = A+y. (17)

The simple, efficient procedure to train an ELM therefore
involves the following steps: (I) Randomly generate hidden
node parameters (in or case W ); (II) Compute the activation
matrix A (Eq. (15)); (III) Compute the output weights (Eq.
(17)).

Despite the apparent simplicity of the ELM approach, the
crucial result is that even random weights in the hidden layer
endow a network with notable representation ability. More-
over, the theory derived in [54] proves that regularization
strategies can further improve the approach’s generalization
performance. As a result, the cost function of Eq. (16)
is augmented by a regularization factor [54]. A common
approach is then to use the L2 regularizer

w∗ = argmin
w
‖Aw − y‖2 + λ ‖w‖2 , (18)

and consequently the vector of weights w∗ is then obtained
as follows:

w∗ = (ATA+ λI)−1ATy, (19)

where I ∈ Rh×h is an identity matrix. Note that h, the
number of hidden neuron, is an hyperparameter that needs
to be tuned based on the problem under exam.

C. Ensemble Methods
It is well known that combining the output of several

classifiers results in a much better performance than using
any one of them alone [26], [55]. In fact, many state-of-the-
art algorithms search for a weighted combination of simpler
classifiers [56]: Bagging [26], Boosting [57] and Bayesian
approaches [58] or even NN [59] and Kernel methods such as
SVM [19], [60]. Optimising the generalisation performance
of the final model still represents an unsolved problem. How
do simple classifiers have to be built? How many simple
classifiers have to be combined? How do they have to be
combined? Is there any theory which can help in making
these choices?

In [26] Breiman tried to give an answer to these questions
by proposing the Random Forests (RF) of tree classifiers, one
of the state-of-the-art algorithm for classification which has
shown to be probably one of the most effective tool in this
context [24]. RF combine bagging to random subset feature
selection. In bagging, each tree is independently constructed
using a bootstrap sample of the dataset [61]. RF add an



additional layer of randomness to bagging. In addition to con-
structing each tree using a different bootstrap sample of the
data, RF change how the classification trees are constructed.
In standard trees, each node is split using the best division
among all variables. In RF, each node is split using the best
among a subset of predictors randomly chosen at that node.
Eventually, a simple majority vote for classification tasks or
the average response for the regression ones is taken for
prediction. In [26] it is shown that the accuracy of the final
model depends mainly on three different factors: the number
of trees composing the forest, the accuracy of each tree and
the correlation between them. The accuracy for RF converges
to a limit as the number of trees in the forest increases,
while it rises as the accuracy of each tree increases and
the correlation between them decreases. RF counterintuitive
learning strategy turns out to perform very well compared to
many other classifiers, including NN and SVM, and is robust
against overfitting [26], [24].

In RF the learning phase of each of the nt trees composing
the forest is quite simple. From Dn, bbnc samples are
sampled with replacement and D′bbnc is built. A tree is
constructed with D′bbnc but the best split is chosen among
a subset of nv predictors over the possible d predictors ran-
domly chosen at each node. The tree is grown until the node
contains a maximum of nl samples. During the classification
phase of a previously unseen x, each tree classifies x in
a class yi∈{1,··· ,nt}, and then the final classification is the
{p1, · · · , pnt}-weighted combination of all the answers of
each tree of the RF (note that

∑nt

i=1 pi = 1). If b = 1,
nv =

√
n, nl = 1, and pi∈{1,··· ,nt} =

1/nt the original RF
formulation is obtained [26], where nt is usually chosen to
tradeoff accuracy and efficiency [62] or based on the out-
of-bag estimate [26] or according to some consistency result
[62].

A common misconception about RF is to consider this
algorithm as an hyperparameter-free learning algorithm [63],
[64]. In fact, there are several hyperparameters which charac-
terize the performance of the final model: the number of trees
nt, the number of samples to extract during the bootstrap
procedure b, the depth of each tree nl, and the number of
predictors nv exploited in each subset during the growth of
each tree. Besides b, nv and nl, the weights p{i∈1,··· ,nt} are
of paramount importance for the accuracy of an ensemble
classifier [56], [55] and for this reason the strategy proposed
in [65] and recently further developed in [56], [66] will be
used to weight each tree Ti based on its out of bag empirical
error L̂(Ti) [65], [56], [66], [67]:

pi =
e−γL̂(Ti)∑nt

j=1 e
−γL̂(Ti)

, (20)

where γ is another hyperparameter to be tuned. A tuning
procedure is then needed in order to select the set of
hyperparameters [68] which allow to build a RF model
characterized by the best generalization performances.

D. Model Selection
Model Selection (MS) deals with the problem of tun-

ing the hyperparameters of each learning algorithm [68].

Several methods exist for MS purpose: resampling meth-
ods, like the well-known k-Fold Cross Validation (KCV)
[69] or the Nonparametric Bootstrap (BTS) approach [32]
approaches, which represents the state-of-the-art model se-
lection approaches when targeting several applications [68].
Resampling methods rely on a simple idea: the original
dataset Dn is resampled once or many (nr) times, with or
without replacement, to build two independent datasets called
training, and validation sets, respectively Lrl and Vrv , with
r ∈ {1, · · · , nr}. Note that Lrl ∩ Vrv = �, Lrl ∪ Vrv = Dn.
Then, in order to select the best set of hyperparametersH in a
set of possible ones H = {H1,H2, · · · } for the algorithm AH
or, in other words, to perform the MS phase, the following
procedure has to be applied:

H∗ : min
H∈H

1

nr

nr∑
r=1

1

v

∑
(xi,yi)∈Vr

v

`(AH,Lr
l
, yi), (21)

where AH,Lr
l

is a model build with the algorithm A with
its set of hyperparameters H and with the data Lrl . Since
the data in Lrl are i.i.d. from the one in Vrv , the idea is that
H∗ should be the set of hyperparameters which allows to
achieve a small error on a data set that is independent from
the training set.

Note that if r = 1, if l, v, and t are aprioristically set
such that n = l + v + t, and if the the resample procedure
is performed without replacement, the hold out method is
obtained [32]. For implementing the complete k-fold cross
validation, instead, it is needed to set r ≤

(
n
k

)(n−n
k

k

)
, l =

(k − 2)nk , v = n
k , and t = n

k and the resampling must
be done without replacement [69], [70], [32]. Finally, for
implementing the bootstrap, l = n and Lrl must be sampled
with replacement from Dn, while Vrv and T rt are sampled
without replacement from the sample of Dn that have not
been sampled in Lrl [71], [32]. Note that for the bootstrap
procedure r ≤

(
2n−1
n

)
. In this paper the BTS is exploited

because it represents the state of the art approach [71], [32],
[68].

IV. DESCRIPTION OF DATA AND CUSTOM KPIS

In order to validate the proposed methodology and to
assess the performance of the new prediction system, a
large number of experiments have been performed on the
real data provided by RFI. The Italian IM owns records of
the train movements from the entire Italian railway network
over several years. For the purpose of this work, RFI gave
access to more than 6 months of data related to two main
areas in Italy, including more than 1000 trains and several
checkpoints.

Each record refers to a single train movement, and is
composed of the following information: Date, Train ID,
Checkpoint ID, Checkpoint Name, Arrival Time, Arrival
Delay, Departure Time, Departure Delay and Event Type.
The last field, namely “Event Type”, refers to the type
of event that has been recorded with respect to the train
itinerary. For instance, this field can assume different values:
Origin (O), Destination (D), Stop (F), Transit (T). The Arrival
(Departure) Time field reports the actual time of arrival



Fig. 5: KPIs for the train and the itinerary of Figure 1

(departure) of a train at a particular checkpoint. Combining
this information with the value contained in the Arrival (De-
parture) Delay field, it is possible to retrieve the scheduled
time of arrival (departure). Note that, although IMs usually
own proprietary software solutions, this kind of data can be
retrieved by any rail TMS, since system of this kind store the
same raw information but in different formats. For example,
some systems provide the theoretical time and the delay of a
train, while others provide the theoretical time and the actual
time, making the two information sets exchangeable without
loss of information. Finally, note that the information has
been anonymized for privacy and security concerns.

Concerning the exogenous variables, the weather condi-
tions data related to the same time period has been retrieved
from the regional weather services of the two considered
areas, i.e. from [72] and [73]. These data included several
actual and forecasted information (i.e. temperature [oC],
relative humidity [%], wind direction [o] and intensity [m/s],
rain level [mm], pressure [bar] and solar radiation [W/m2])
for every checkpoint included in the train movements dataset.

The approach used to perform the experiments consisted
in (i) building for each train in the dataset the needed set of
models based on the three algorithms (i.e. KRLS, ELM and
RF), (ii) contemporarily tuning the models’ hyperparameters
through suitable models selection methodologies, (iii) apply-
ing the models to the current state of the trains, and finally
(iv) validating the models in terms of performance based
on what really happens in a future instant. Consequently,
simulations have been performed for all the trains included
in the dataset adopting an online-approach that updates
predictive models every day, so to take advantage of new
information as soon as it becomes available.

The results of the simulations have been compared with
the results of the current train delay prediction system used
by RFI, with and without the additional weather data. The
RFI system is quite similar to the one described in [14]
from Goverde, although the latter includes process mining
refinements which potentially increase its performance.

In order to fairly assess the performance of the proposed
prediction system, a set of novel KPIs agreed with RFI

has been designed and used. Since the purpose of this
work was to build predictive models able to forecast the
train delays, these KPIs represent different indicators of the
quality of these predictive models. Note that the predictive
models should be able to predict, for each train and at
each checkpoint of its itinerary, the delay that the train
will have in any of the successive checkpoints. Based on
this consideration, three different indicators of the quality of
predictive models have been used, which are also proposed
in Figure 5 in a graphical fashion:

• Average Accuracy at the i-th following Checkpoint for
train j (AAiCj): for a particular train j, the absolute
value of the difference between the predicted delay
and its actual delay is averaged, at the i-th following
Checkpoint with respect to the actual Checkpoint.

• AAiC: is the average over the different trains j of AAiCj
• Average Accuracy at Checkpoint-i for train j (AACij):

for a particular train j, the average of the absolute value
of the difference between the predicted delay and its
actual delay, at the i-th checkpoint, is computed.

• AACi: is the average over the different trains j of AACij
• Total Average Accuracy for train j (TAAj): is the av-

erage over the different checkpoint i-th of AASij (or
equivalently the average over the index i of AAiSj).

• TAA: is the average over the different trains j of TAAj

V. RESULTS

This section reports the results of the experiments exploit-
ing the approaches described in Section III, benchmarked
with the KPIs described in Section IV.

The experiments have been run in two different scenarios:

• NoWI: in this case, only the historical data about train
movements provided by RFI have been exploited

• WI: both historical data about train movements and data
retrieved from the national weather service have been
exploited

The performance of different methods have been com-
pared:

• RFI: the RFI system has been implemented, which is
quite similar to the one described in [14]. Note that, the
RFI method do not exploit weather informations.

• RF: the Random Forests algorithm has been
exploited, where the set of possible configurations
of hyperparameters has been defined as HRF =
{(b, nv, nl, γ) : b ∈ Gb, nv ∈ Gnv , nl ∈ Gnl

, γ ∈ Gγ}
with Gb = {0.20, 0.22, · · · , 1.20}, Gnv =
d{0.00,0.02,··· ,1.00}, nl ∈ n · {0.00, 0.01, · · · , 0.50} + 1
and Gγ = 10{−6.0,−5.8,··· ,4} optimized based on the
BTS MS procedure with nr = 100. The number of
trees is set to nt = 500;

• KM: the kerneled version of RLS with the Gaussian
kernel has been exploited, where the set of possible
configurations of hyperparameters has been defined
as HKM = {(λ, γ) : λ ∈ Gλ, γ ∈ Gγ} with Gλ =
10{−6.0,−5.8,··· ,4} and Gγ = 10{−6.0,−5.8,··· ,4} opti-
mized based on the BTS MS procedure with nr = 100.



• ELM: the Extreme Learning Machine has
been exploited, where the set of possible
configurations of hyperparameters has been defined
as HELM = {(h, λ) : h ∈ Gh, λ ∈ Gλ} with
Gh =

{⌊
10{1,1.2,··· ,3.8,4}

⌋}
and Gλ = 10{−6.0,−5.8,··· ,4}

optimized based on the BTS MS procedure with
nr = 100.

Finally, as suggested by the RFI experts, t0 − δ− is set
equal to the time, in the nominal timetable, of the origin of
the train.

In Tables I, II and III the KPIs of the different methods in
the two different scenarios have been reported. In particular:
• Table I reports the AAiCj and AAiC. From Table I it is

possible to observe that RF method in the WI scenario is
the best performing method which improves up to ×2
the current RFI system. When the RF method in the
NoWI scenario is exploited, it improves the RFI system
by a large amount. Instead, the usage of weather data,
with respect to not using it, improves the accuracy of
approximately 10%. Also ELM and KM (both in the WI
and NoWI scenarios) improve over the RFI system by a
large amount. Finally, note that the accuracy decreases
as j increases since the forecast refers to an event which
is further into the future, and note that some trains have
less checkpoint than the others (this is the reason of the
symbol ’-’ for train j = 14, which only passes through
two checkpoints).

• Table II reports the AACij and the AACi. From Table
II it is possible to derive the same observations derived
from Table I. In this case it is important to underline
that not all the trains run over all the checkpoints, and
this is the reason why for some combinations of train j
and station i there is a symbol ’-’.

• Table III reports the TAAj and the TAA. The latter is
more concise and underlines better the advantage, from
a final performance perspective, of the RF method in the
WI scenario with respect to the RFI prediction system.

Finally, note that the Tables are not complete due to space
constraints and that the train and station IDs have been
anonymized because of privacy issues.

VI. CONCLUSIONS

This paper deals with the problem of building a train delay
prediction system based on advance analytics techniques able
to grasp the knowledge hidden in historical data about train
movements and exogenous weather data. In particular, the
proposed solution improves the state of the art methodologies
which rely, instead, on static rules built by experts of the
railway infrastructure and are based on classical univariate
statistic. Results on real world train movements data pro-
vided by the Italian Infrastructure Manager (Rete Ferroviaria
Italiana - RFI) and weather data retrieved from the national
weather services show that advanced analytics approaches
can perform up to twice better than current state-of-the-art
methodologies. In particular, exploiting only historical data
about train movement gives robust models with high perfor-
mance with respect to the actual train delay prediction system

of RFI Moreover, these models can be further improved by
taking into account also weather informations. Different state
of the art analytics tools have been compared, and Random
Forest consistently performed better with respect to the other
methodologies exploited.

Future works will take into account other exogenous infor-
mation available from external sources, such as information
about passenger flows by using touristic databases, about
railway assets conditions, or any other source of data which
may affect railway dispatching operations.

ACKNOWLEDGMENTS

This research has been supported by the European Union
through the projects C4R (European Union’s Seventh Frame-
work Programme for research, technological development
and demonstration under grant agreement 605650) and
In2Rail (European Union’s Horizon 2020 research and in-
novation programme under grant agreement 635900).

REFERENCES

[1] E. Fumeo, L. Oneto, and D. Anguita, “Condition based maintenance in
railway transportation systems based on big data streaming analysis,”
The INNS Big Data conference, 2015.

[2] H. Li, D. Parikh, Q. He, B. Qian, Z. Li, D. Fang, and A. Hampapur,
“Improving rail network velocity: A machine learning approach to
predictive maintenance,” Transportation Research Part C: Emerging
Technologies, vol. 45, pp. 17–26, 2014.

[3] H. Feng, Z. Jiang, F. Xie, P. Yang, J. Shi, and L. Chen, “Automatic
fastener classification and defect detection in vision-based railway
inspection systems,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 63, no. 4, pp. 877–888, 2014.

[4] S. A. Branishtov, Y. A. Vershinin, D. A. Tumchenok, and A. M.
Shirvanyan, “Graph methods for estimation of railway capacity,” in
IEEE 17th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2014, pp. 525–530.

[5] Y. Bai, T. K. Ho, B. Mao, Y. Ding, and S. Chen, “Energy-efficient
locomotive operation for chinese mainline railways by fuzzy predictive
control,” IEEE Transactions on Intelligent Transportation Systems,
vol. 15, no. 3, pp. 938–948, 2014.

[6] E. Davey, “Rail traffic management systems (tms),” in IET Professional
Development Course Railway Signalling and Control Systems, 2012.

[7] M. Müller-Hannemann and M. Schnee, “Efficient timetable informa-
tion in the presence of delays,” in Robust and Online Large-Scale
Optimization, 2009.

[8] J. F. Cordeau, P. Toth, and D. Vigo, “A survey of optimization models
for train routing and scheduling,” Transportation science, vol. 32,
no. 4, pp. 380–404, 1998.

[9] T. Dollevoet, F. Corman, A. D’Ariano, and D. Huisman, “An iterative
optimization framework for delay management and train scheduling,”
Flexible Services and Manufacturing Journal, vol. 26, no. 4, pp. 490–
515, 2014.

[10] S. Milinković, M. Marković, S. Vesković, M. Ivić, and N. Pavlović, “A
fuzzy petri net model to estimate train delays,” Simulation Modelling
Practice and Theory, vol. 33, pp. 144–157, 2013.

[11] A. Berger, A. Gebhardt, M. Müller-Hannemann, and M. Ostrowski,
“Stochastic delay prediction in large train networks,” in OASIcs-
OpenAccess Series in Informatics, 2011.

[12] S. Pongnumkul, T. Pechprasarn, N. Kunaseth, and K. Chaipah, “Im-
proving arrival time prediction of thailand’s passenger trains using
historical travel times,” in International Joint Conference on Computer
Science and Software Engineering, 2014.

[13] R. M. P. Goverde, “A delay propagation algorithm for large-scale
railway traffic networks,” Transportation Research Part C: Emerging
Technologies, vol. 18, no. 3, pp. 269–287, 2010.

[14] I. A. Hansen, R. M. P. Goverde, and D. J. Van Der Meer, “Online train
delay recognition and running time prediction,” in IEEE International
Conference on Intelligent Transportation Systems, 2010.

[15] P. Kecman, Models for predictive railway traffic management (PhD
Thesis). TU Delft, Delft University of Technology, 2014.



TABLE I: Data Driven Models and RFI prediction systems AAiCj and AAiC (in minutes).

AAiCj RFI NoWI WI RFI NoWI WI RFI NoWI WI RFI NoWI WI
RF KM ELM RF KM ELM RF KM ELM RF KM ELM RF KM ELM RF KM ELM RF KM ELM RF KM ELM

· · ·

j i 1st 2nd 3rd 4th

1 1.8 1.6 1.8 1.6 1.4 1.7 1.5 2.1 1.8 1.9 1.8 1.7 2.0 1.8 2.3 2.0 2.3 2.1 2.0 2.2 2.2 2.5 2.3 2.5 2.3 2.2 2.5 2.3
2 3.2 1.9 2.0 1.8 1.8 1.8 1.8 3.4 1.9 2.2 1.9 1.9 2.1 1.9 3.8 2.4 2.6 2.2 2.1 2.4 2.2 4.2 2.4 2.6 2.4 2.3 2.6 2.4
3 1.9 1.5 1.6 1.4 1.4 1.6 1.5 2.0 1.6 1.7 1.6 1.5 1.6 1.5 2.3 1.7 2.1 1.8 1.7 1.9 1.8 2.6 1.9 2.1 1.9 1.9 2.1 1.9
4 2.0 1.5 1.7 1.5 1.5 1.6 1.5 2.2 1.6 1.8 1.6 1.5 1.6 1.7 2.6 1.9 2.0 1.9 1.7 2.0 1.9 3.0 2.1 2.2 2.1 1.9 2.2 2.2
5 1.4 0.8 1.0 0.9 0.8 1.0 0.8 1.7 1.1 1.1 1.0 1.0 1.2 1.0 2.0 1.2 1.3 1.2 1.2 1.3 1.2 2.3 1.5 1.5 1.4 1.3 1.6 1.5
6 1.4 1.2 1.4 1.3 1.3 1.4 1.2 1.7 1.6 1.6 1.5 1.5 1.6 1.5 2.0 1.9 2.0 1.8 1.7 1.8 1.9 2.3 2.1 2.2 2.1 1.9 2.2 2.0
7 1.3 1.0 1.1 1.0 1.0 1.1 1.0 1.4 1.1 1.3 1.1 1.0 1.2 1.1 1.6 1.4 1.4 1.3 1.2 1.3 1.4 1.8 1.5 1.6 1.5 1.5 1.6 1.4
8 1.3 1.1 1.1 1.0 1.0 1.0 1.0 1.6 1.3 1.4 1.3 1.2 1.3 1.3 1.9 1.4 1.7 1.4 1.3 1.4 1.5 2.1 1.7 1.7 1.6 1.6 1.6 1.5
9 1.2 0.8 0.8 0.8 0.8 0.9 0.8 1.2 0.9 1.0 0.9 0.8 0.9 0.9 1.4 1.1 1.1 1.0 1.0 1.0 1.0 1.5 1.2 1.2 1.1 1.0 1.2 1.1
10 1.5 1.1 1.0 1.0 1.0 1.0 1.1 1.6 1.1 1.2 1.1 1.0 1.1 1.1 2.0 1.3 1.4 1.3 1.3 1.3 1.3 2.3 1.5 1.5 1.5 1.4 1.5 1.5
11 1.4 1.2 1.3 1.2 1.1 1.3 1.2 1.5 1.4 1.5 1.3 1.3 1.4 1.4 1.7 1.6 1.6 1.5 1.4 1.6 1.4 1.9 1.7 1.8 1.6 1.6 1.8 1.6
12 2.1 1.5 1.8 1.6 1.5 1.7 1.5 2.6 1.9 2.1 1.9 1.8 1.9 1.8 3.1 2.2 2.3 2.1 2.1 2.1 2.2 3.5 2.4 2.7 2.3 2.2 2.4 2.4
13 1.2 0.9 1.0 0.9 0.9 0.9 0.9 1.3 1.0 1.1 1.0 1.0 1.0 1.0 1.4 1.1 1.2 1.1 1.1 1.2 1.2 1.6 1.3 1.4 1.3 1.3 1.3 1.2
14 3.1 2.2 2.3 2.1 2.0 2.3 2.3 2.2 2.3 2.1 2.0 2.3 2.3 2.2 - - - - - - - - - - - - - -
15 2.0 1.4 1.5 1.3 1.3 1.4 1.4 2.4 1.5 1.7 1.5 1.4 1.6 1.5 2.9 1.7 1.9 1.7 1.7 1.8 1.7 3.4 1.8 2.0 1.9 1.8 2.0 2.0
16 1.7 1.2 1.3 1.1 1.2 1.2 1.2 2.0 1.3 1.4 1.3 1.2 1.3 1.3 2.4 1.6 1.7 1.5 1.4 1.6 1.5 2.8 1.7 1.8 1.6 1.7 1.7 1.7
17 1.9 1.3 1.5 1.3 1.2 1.4 1.4 2.2 1.4 1.6 1.4 1.4 1.5 1.5 2.7 1.7 1.7 1.6 1.6 1.8 1.7 3.1 1.8 2.1 1.8 1.9 2.0 1.8
18 1.3 0.4 0.4 0.4 0.3 0.4 0.4 1.3 0.4 0.5 0.4 0.4 0.5 0.4 1.5 0.5 0.6 0.5 0.5 0.5 0.6 1.7 0.7 0.7 0.6 0.6 0.7 0.7
19 1.5 0.7 0.7 0.7 0.6 0.7 0.7 1.6 0.7 0.8 0.7 0.7 0.7 0.7 1.8 0.8 0.9 0.8 0.8 0.9 0.9 1.9 0.9 1.0 0.9 0.9 1.0 0.9
20 1.5 0.3 0.4 0.3 0.3 0.4 0.3 1.7 0.4 0.5 0.4 0.4 0.4 0.4 1.8 0.5 0.5 0.5 0.5 0.5 0.5 1.8 0.6 0.7 0.6 0.6 0.6 0.6
21 1.1 0.6 0.6 0.5 0.5 0.5 0.5 1.2 0.6 0.6 0.6 0.6 0.7 0.6 1.2 0.7 0.8 0.7 0.7 0.8 0.7 1.2 0.9 0.9 0.8 0.8 0.9 0.9
22 1.2 0.4 0.4 0.4 0.4 0.4 0.4 1.2 0.5 0.5 0.5 0.5 0.5 0.5 1.3 0.6 0.7 0.6 0.6 0.7 0.6 1.3 0.7 0.9 0.7 0.7 0.8 0.7
23 1.9 0.7 0.8 0.7 0.7 0.8 0.7 2.0 0.9 1.0 0.8 0.8 0.9 0.8 2.4 1.0 1.1 1.0 1.0 1.0 1.0 2.6 1.1 1.2 1.1 1.1 1.1 1.0
24 1.0 0.4 0.5 0.4 0.4 0.5 0.5 1.1 0.5 0.5 0.5 0.5 0.5 0.5 1.1 0.6 0.7 0.6 0.6 0.6 0.6 1.1 0.7 0.8 0.7 0.7 0.7 0.7
25 1.0 0.4 0.4 0.4 0.3 0.4 0.4 1.1 0.4 0.4 0.4 0.4 0.4 0.4 1.2 0.5 0.6 0.5 0.5 0.6 0.6 1.1 0.6 0.7 0.6 0.6 0.7 0.6
26 1.9 0.6 0.7 0.7 0.6 0.7 0.7 2.0 0.8 0.8 0.8 0.7 0.8 0.8 2.3 0.9 1.0 0.9 0.9 0.9 0.9 2.6 1.0 1.1 1.0 1.0 1.0 1.0
27 1.0 0.4 0.4 0.4 0.3 0.4 0.4 1.1 0.4 0.5 0.4 0.4 0.5 0.4 1.2 0.5 0.6 0.5 0.5 0.6 0.5 1.1 0.6 0.7 0.7 0.7 0.7 0.7
28 1.0 0.4 0.5 0.4 0.4 0.4 0.4 1.0 0.5 0.6 0.5 0.5 0.6 0.6 1.2 0.6 0.7 0.6 0.6 0.7 0.7 1.4 0.8 0.8 0.7 0.7 0.8 0.7
29 1.1 0.3 0.4 0.3 0.3 0.4 0.3 1.1 0.4 0.4 0.4 0.4 0.5 0.4 1.2 0.5 0.5 0.5 0.5 0.5 0.5 1.1 0.6 0.7 0.6 0.6 0.7 0.7
30 2.0 0.6 0.7 0.6 0.6 0.7 0.7 2.1 0.7 0.8 0.7 0.7 0.8 0.8 2.4 0.9 0.9 0.9 0.8 0.9 0.9 2.7 1.0 1.1 0.9 0.9 1.1 0.9

· · ·
AACi 3.0 1.6 1.8 1.6 1.6 1.7 1.6 2.9 1.7 1.9 1.7 1.6 1.8 1.7 3.2 2.0 2.2 2.0 1.9 2.1 2.0 3.4 2.3 2.5 2.2 2.1 2.4 2.3

TABLE II: Data Driven Models and RFI prediction systems AACij and AACi (in minutes).

AACij RFI NoWI WI RFI NoWI WI RFI NoWI WI RFI NoWI WI
RF KM ELM RF KM ELM RF KM ELM RF KM ELM RF KM ELM RF KM ELM RF KM ELM RF KM ELM

· · ·

j i 1 2 3 4

1 2.9 2.4 2.5 2.3 2.3 2.5 2.3 - - - - - - - - - - - - - - 2.2 2.2 2.5 2.2 2.0 2.4 2.2
2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 - - - - - - - - - - - - - - 2.5 1.8 1.9 1.7 1.7 1.8 1.8
3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 - - - - - - - - - - - - - - 2.2 1.8 1.8 1.6 1.7 1.7 1.6
4 1.7 1.5 1.7 1.5 1.4 1.6 1.5 2.3 1.8 2.1 1.8 1.7 1.9 1.8 2.9 1.7 1.9 1.8 1.6 1.9 1.8 - - - - - - -
5 - - - - - - - 1.1 1.2 1.3 1.1 1.1 1.1 1.1 1.1 0.9 1.0 0.9 0.9 1.0 0.9 - - - - - - -
6 - - - - - - - 1.2 1.4 1.5 1.4 1.4 1.5 1.5 1.8 1.8 2.1 1.8 1.7 1.9 1.8 - - - - - - -
7 - - - - - - - 1.8 1.3 1.3 1.3 1.3 1.3 1.2 1.7 1.5 1.8 1.5 1.5 1.6 1.6 - - - - - - -
8 - - - - - - - 1.5 1.4 1.6 1.4 1.3 1.4 1.4 3.0 2.5 2.9 2.5 2.4 2.6 2.7 - - - - - - -
9 - - - - - - - 1.1 1.0 1.1 1.0 0.9 1.1 1.0 1.2 1.1 1.2 1.1 1.0 1.2 1.2 - - - - - - -
10 - - - - - - - 1.9 1.2 1.3 1.2 1.2 1.3 1.2 1.8 1.3 1.6 1.4 1.2 1.5 1.4 - - - - - - -
11 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
12 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
13 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
14 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
15 1.3 1.1 1.3 1.1 1.1 1.2 1.2 1.8 1.2 1.3 1.1 1.0 1.2 1.2 1.2 1.1 1.2 1.1 1.1 1.1 1.0 - - - - - - -
16 - - - - - - - - - - - - - - - - - - - - - 3.9 1.0 1.0 1.0 1.0 1.0 0.9
17 - - - - - - - - - - - - - - - - - - - - - 5.8 2.6 3.0 2.7 2.6 2.9 2.8
18 - - - - - - - - - - - - - - - - - - - - - 6.7 4.6 4.9 4.3 4.2 4.6 4.2
19 - - - - - - - - - - - - - - - - - - - - - 3.8 1.0 1.1 1.0 0.9 1.0 1.0
20 - - - - - - - - - - - - - - - - - - - - - 3.7 1.0 1.0 1.0 1.0 1.0 1.0
21 - - - - - - - - - - - - - - - - - - - - - 5.9 2.5 2.7 2.4 2.3 2.5 2.5
22 - - - - - - - - - - - - - - - - - - - - - 4.9 2.2 2.4 2.2 2.3 2.5 2.3
23 - - - - - - - - - - - - - - - - - - - - - 6.5 3.6 4.1 3.6 3.5 4.0 3.5
24 - - - - - - - - - - - - - - - - - - - - - 5.1 2.2 2.6 2.3 2.2 2.4 2.2
25 - - - - - - - - - - - - - - - - - - - - - 4.6 1.9 2.0 1.8 1.8 1.8 1.8
26 - - - - - - - - - - - - - - - - - - - - - 5.6 2.9 3.1 2.9 2.9 3.1 2.9
27 - - - - - - - - - - - - - - - - - - - - - 6.2 3.0 3.1 2.8 2.5 2.8 2.7
28 - - - - - - - - - - - - - - - - - - - - - 5.5 2.9 3.0 2.8 2.6 3.0 2.8
29 - - - - - - - - - - - - - - - - - - - - - 4.2 1.1 1.2 1.1 1.1 1.2 1.1
30 - - - - - - - - - - - - - - - - - - - - - 4.7 1.7 2.0 1.8 1.6 2.0 1.8

· · ·
AAiC 3.3 1.5 1.7 1.5 1.5 1.6 1.5 3.1 1.5 1.6 1.5 1.4 1.5 1.5 3.3 1.4 1.5 1.4 1.3 1.5 1.4 4.2 2.3 2.5 2.2 2.2 2.4 2.3

[16] P. Kecman and R. M. P. Goverde, “Online data-driven adaptive
prediction of train event times,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 1, pp. 465–474, 2015.

[17] F. Takens, Detecting strange attractors in turbulence. Springer, 1981.
[18] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw,

“Geometry from a time series,” Physical Review Letters, vol. 45, no. 9,
p. 712, 1980.

[19] V. N. Vapnik, Statistical learning theory. Wiley New York, 1998.
[20] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern anal-

ysis. Cambridge university press, 2004.
[21] E. E. Elattar, J. Goulermas, and Q. H. Wu, “Electric load forecasting

based on locally weighted support vector regression,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, vol. 40, no. 4, pp. 438–447, 2010.

[22] L. Ghelardoni, A. Ghio, and D. Anguita, “Energy load forecasting
using empirical mode decomposition and support vector regression,”
IEEE Transactions on Smart Grid, vol. 4, no. 1, pp. 549–556, 2013.

[23] B. Schölkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[24] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do
we need hundreds of classifiers to solve real world classification
problems?” JMLR, vol. 15, no. 1, pp. 3133–3181, 2014.

[25] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.

521, no. 7553, pp. 436–444, 2015.
[26] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.

5–32, 2001.
[27] N. Cristianini and J. Shawe-Taylor, An introduction to support vector

machines and other kernel-based learning methods. Cambridge
university press, 2000.

[28] A. J. Smola and B. Schölkopf, “A tutorial on support vector regres-
sion,” Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[29] W. S. Lee, P. L. Bartlett, and R. C. Williamson, “The importance
of convexity in learning with squared loss,” IEEE Transactions on
Information Theory, vol. 44, no. 5, pp. 1974–1980, 1998.

[30] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri, “Are
loss functions all the same?” Neural Computation, vol. 16, no. 5, pp.
1063–1076, 2004.

[31] G. Lugosi and K. Zeger, “Nonparametric estimation via empirical risk
minimization,” IEEE Transactions on Information Theory, vol. 41,
no. 3, pp. 677–687, 1995.

[32] D. Anguita, A. Ghio, L. Oneto, and S. Ridella, “In-sample model se-
lection for support vector machines,” in International Joint Conference
on Neural Networks, 2011.

[33] ——, “Maximal discrepancy vs. rademacher complexity for error
estimation.” in ESANN, 2011.

[34] ——, “A learning machine with a bit-based hypothesis space,” in



TABLE III: Data Driven Models and RFI prediction systems
TAAj and TAA (in minutes).

j
TAAj

RFI NoWI WI
RF KM ELM RF KM ELM

1 2.2 1.9 2.2 2.0 1.8 2.1 2.0
2 4.3 2.3 2.4 2.2 2.1 2.3 2.2
3 2.3 1.6 1.8 1.6 1.5 1.7 1.6
4 2.4 1.8 2.0 1.7 1.7 1.9 1.7
5 1.7 1.1 1.3 1.1 1.0 1.1 1.1
6 1.9 1.7 2.0 1.7 1.6 1.9 1.7
7 1.5 1.3 1.4 1.2 1.2 1.3 1.2
8 1.9 1.6 1.7 1.5 1.4 1.6 1.6
9 1.4 0.9 1.1 0.9 0.9 1.0 1.0
10 1.8 1.1 1.2 1.2 1.2 1.2 1.2
11 1.8 1.5 1.6 1.5 1.4 1.6 1.5
12 2.8 2.1 2.2 2.0 2.0 2.1 1.9
13 1.4 1.1 1.2 1.1 1.0 1.2 1.1
14 3.1 2.2 2.3 2.1 2.1 2.4 2.2
15 1.2 0.9 1.0 1.0 0.9 1.1 1.0
16 3.9 1.0 1.0 1.0 0.9 1.1 1.0
17 5.8 2.8 3.0 2.7 2.5 2.8 2.6
18 6.7 4.6 4.9 4.3 4.1 4.5 4.6
19 3.8 1.0 1.1 1.0 1.0 1.0 1.0
20 3.7 0.9 1.1 1.0 1.0 1.1 1.0
21 5.9 2.5 2.7 2.4 2.3 2.4 2.5
22 4.9 2.3 2.6 2.2 2.3 2.4 2.2
23 6.5 3.6 4.1 3.6 3.4 4.0 3.7
24 5.1 2.4 2.5 2.3 2.3 2.5 2.2
25 4.6 1.9 2.1 1.8 1.8 2.0 1.8
26 5.6 2.9 3.1 2.9 2.8 3.2 2.8
27 6.2 2.9 3.1 2.8 2.8 3.1 2.8
28 5.5 2.9 3.0 2.8 2.6 2.9 2.9
29 4.2 1.0 1.2 1.1 1.1 1.1 1.0
30 4.7 1.9 1.9 1.8 1.7 1.9 1.7

· · ·
TAA 3.3 2.0 2.2 2.0 1.9 2.1 2.0

European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, 2013.

[35] A. Tikhonov and V. Y. Arsenin, Methods for solving ill-posed prob-
lems. Nauka, Moscow, 1979.

[36] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse
problems. Springer, 1996.

[37] L. Györfi, A distribution-free theory of nonparametric regression.
Springer, 2002.

[38] D. Pollard, “Empirical processes: theory and applications,” in NSF-
CBMS regional conference series in probability and statistics, 1990.

[39] A. Caponnetto and E. De Vito, “Optimal rates for the regularized
least-squares algorithm,” Foundations of Computational Mathematics,
vol. 7, no. 3, pp. 331–368, 2007.

[40] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer
theorem,” in Computational learning theory, 2001.

[41] B. Scholkopf, “The kernel trick for distances,” in Neural information
processing systems, 2001.

[42] S. S. Keerthi and C.-J. Lin, “Asymptotic behaviors of support vector
machines with gaussian kernel,” Neural computation, vol. 15, no. 7,
pp. 1667–1689, 2003.

[43] L. Oneto, A. Ghio, S. Ridella, and D. Anguita, “Support vector
machines and strictly positive definite kernel: The regularization
hyperparameter is more important than the kernel hyperparameters,”
in International Joint Conference on Neural Networks, 2015.

[44] D. M. Young, Iterative solution of large linear systems. DoverPub-
lications. com, 2003.

[45] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. B. Tsai, M. Amde, S. Owen, D. Xin, D. Xin, M. J.
Franklin, R. Z. Matei Zaharia, and A. Talwalkar, “Mllib: Machine
learning in apache spark,” arXiv preprint arXiv:1505.06807, 2015.

[46] E. Cambria and G.-B. Huang et al., “Extreme learning machines,”
IEEE Intelligent Systems, vol. 28, no. 6, pp. 30–59, 2013.

[47] G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme
learning machines: A review,” Neural Networks, vol. 61, pp. 32–48,
2015.

[48] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–
501, 2006.

[49] S. Ridella, S. Rovetta, and R. Zunino, “Circular backpropagation
networks for classification,” IEEE Transactions on Neural Networks,
vol. 8, no. 1, pp. 84–97, 1997.

[50] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Cognitive modeling, vol. 5,
no. 3, p. 1, 1988.

[51] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation
using incremental constructive feedforward networks with random
hidden nodes,” IEEE Transactions on Neural Networks, vol. 17, no. 4,
pp. 879–892, 2006.

[52] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
a new learning scheme of feedforward neural networks,” in IEEE
International Joint Conference on Neural Networks, 2004.

[53] F. Bisio, P. Gastaldo, R. Zunino, and E. Cambria, “A learning scheme
based on similarity functions for affective common-sense reasoning,”
in International Joint Conference on Neural Networks, 2015.

[54] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42,
no. 2, pp. 513–529, 2012.

[55] P. Germain, A. Lacasse, M. Laviolette, A. ahd Marchand, and R. J.
F., “Risk bounds for the majority vote: From a pac-bayesian analysis
to a learning algorithm,” JMLR, vol. 16, no. 4, pp. 787–860, 2015.

[56] G. Lever, F. Laviolette, and F. Shawe-Taylor, “Tighter pac-bayes
bounds through distribution-dependent priors,” Theoretical Computer
Science, vol. 473, pp. 4–28, 2013.

[57] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the
margin: A new explanation for the effectiveness of voting methods,”
The Annals of Statistics, vol. 26, no. 5, pp. 1651–1686, 1998.

[58] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian data
analysis. Taylor & Francis, 2014.

[59] B. M. Bishop, Neural networks for pattern recognition. Oxford
university press, 1995.

[60] D. Anguita, A. Ghio, L. Oneto, and S. Ridella, “Selecting the hypoth-
esis space for improving the generalization ability of support vector
machines,” in International Joint Conference on Neural Networks,
2011, pp. 1169–1176.

[61] B. Efron, “Bootstrap methods: Another look at the jackknife,” The
Annals of Statistics, vol. 7, no. 1, pp. 1–26, 1979.

[62] D. Hernández-Lobato, G. Martı́nez-Muñoz, and A. Suárez, “How large
should ensembles of classifiers be?” Pattern Recognition, vol. 46,
no. 5, pp. 1323–1336, 2013.

[63] G. Biau, “Analysis of a random forests model,” JMLR, vol. 13, no. 1,
pp. 1063–1095, 2012.

[64] S. Bernard, L. Heutte, and S. Adam, “Influence of hyperparameters
on random forest accuracy,” in International Workshop on Multiple
Classifier Systems, 2009.

[65] O. Catoni, Pac-Bayesian Supervised Classification. Institute of
Mathematical Statistics, 2007.

[66] L. Oneto, S. Ridella, and D. Anguita, “Learning theory; pac bayes;
generalisation error,” in European Symposium on Artificial Neural Net-
works, Computational Intelligence and Machine Learning (ESANN),
2016.

[67] O. Ilenia, L. Oneto, and D. Anguita, “Random forests model selection,”
in European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN), 2016.

[68] D. Anguita, A. Ghio, L. Oneto, and S. Ridella, “In-sample and out-
of-sample model selection and error estimation for support vector
machines,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 23, no. 9, pp. 1390–1406, 2012.

[69] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in International Joint Conference on
Artificial Intelligence, 1995.

[70] S. Arlot and A. Celisse, “A survey of cross-validation procedures for
model selection,” Statistics Surveys, vol. 4, pp. 40–79, 2010.

[71] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap.
Chapman & Hall, 1993.

[72] Regione Liguria, “Weather Data of Regione Liguria,” http://www2.
arpalombardia.it/siti/arpalombardia/meteo/richiesta-dati-misurati/
Pagine/RichiestaDatiMisurati.aspx, 2016, online; accessed 3 May
2016.

[73] Regione Lombardia, “Weather Data of Regione Lombardia,”
http://www.cartografiarl.regione.liguria.it/SiraQualMeteo/script/

PubAccessoDatiMeteo.asp, 2016, online; accessed 3 May 2016.


