

In2Rail

Project Title: INNOVATIVE INTELLIGENT RAIL

Starting date: 01/05/2015

Duration in months: 36

Call (part) identifier: H2020-MG-2014

Grant agreement no: 635900

Deliverable D8.8

Integration Test Plan for Application Framework and

Constituents

Due date of deliverable Month 36

Actual submission date 13-04-2018

Organization name of lead contractor for this deliverable SIE

Dissemination level PU

Revision Final

In2Rail Deliverable D8.8

Integration Test Plan for Application Framework and Constituents

Authors

 Details of contribution

Author(s) Siemens AG (SIE)
Stefan Wegele

Chapters 1-9

Contributor(s) Ansaldo STS (ASTS)
Gian Luigi Zanella
Matteo Pinasco

Review and discussions

AZD Praha s.r.o (AZD)
Martin Bojda
Michal Zemlicka

Review and discussions

Bombardier Transportation
(BT)
Martin Karlsson
Roland Kuhn

Review and discussions

CAF Signalling (CAF)
Carlos Sicre Vara de Rey

Review and discussions

HaCon (HC)
Sandra Kempf
Rolf Gooßmann
Mahnam Saeednia

Review and discussions

Thales (THA)
Christoph Bücker

Review and discussions

GA 635900 Page 3 of 40

1. Executive Summary

In In2Rail WP8 a standardized ICT structure for Rail Services is specified. This new

standardised infrastructure for the future Traffic management systems will not only reduce

costs for software development due to standardised interfaces. It also opens a new market

for small innovative services building together a traffic management system (TMS).

This will result in the future that instead of one vendor for the entire TMS, who often owns

the source code and is able to maintain and evolve the system functionality for 20-25 years,

now modules (services) from several vendors are involved.

Therefore a new role is getting more importance: the system integrator, who would take the

responsibility to select appropriate solutions on the market, install and manage the

communication and execution platform, and maintain the solution for the mentioned period

of time. As part of this process the testing process plays a crucial role for establishing a

stable system setup.

This document represents a possible testing approach consisting of two major steps:

 the module vendor implements unit, function and integration tests and delivers them

together with the module. A successful test run would prove that the system

integrator was able to integrate the module into TMS according to specification of

the module vendor;

 the system integrator develops system tests, evaluating the entire system

functionality independently and at a high level.

For both tasks the appropriate approaches are shown, which automate testing on the one

hand and reduce the development costs through usage of COTS testing frameworks on the

other hand.

This document is not standardising the testing approach of the TMS as the number of

possible implementations is huge, but gives a direction, how the standardised TMS

infrastructure can be efficiently exploited for test automation. The test examples in the

document are dedicated to the software developers and architects, who would easily

identify the basic concepts and solutions from the source code snippets in Appendixes A-C.

GA 635900 Page 4 of 40

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY 3

2. ABBREVIATIONS AND ACRONYMS 5

3. BACKGROUND 6

4. OBJECTIVE / AIM 7

5. INTRODUCTION 8

6. TEST ENVIRONMENT 13

6.1. OBSERVABILITY OF COMMUNICATION 13

6.2. REST-BASED API 13

6.3. TEST ENVIRONMENT SETUP AND ORGANISATION 15

6.4. TEST IMPLEMENTATION APPROACHES 15

7. MODULE TESTS 18

8. INTEGRATION TESTS 20

8.1. USE CASE “PERSISTENCE SERVICE” 22

9. FUNCTION TESTS 25

9.1. PERSISTENCE SERVICE 25

9.1.1. Test case 1 25

9.1.2. Test case 2 26

9.2. SANDBOX MANAGEMENT SERVICE 27

9.2.1. Major functions testing 28

9.2.2. Failover functionality 29

10. SYSTEM TESTS 32

11. CONCLUSIONS 35

12. REFERENCES 36

13. APPENDIX A 37

14. APPENDIX B 39

15. APPENDIX C 40

GA 635900 Page 5 of 40

2. Abbreviations and acronyms

Abbreviation / Acronyms Description

AF Application Framework, either a standard for plug-and-play
service management developed in In2Rail (WP8) or a specific
implementation of this standard.

API Application Programming Interface.

COTS Commercial off the shelf: available software as a general
module.

DLL Dynamic-link library, executable code, which can be linked to
the application at run time.

HTTP Hypertext Transfer Protocol is the main protocol for data
communication for the World Wide Web.

ICT Information and Communication Technology

IL Integration Layer, either standard for communication
platform for future TMS developed in In2Rail (WP8) or a
specific implementation of this standard.

JavaScript It is a high-level interpreted programming language.

IMDG In Memory Data Grid, a data management technology for
replicated object states.

JAR Java Archive is a package file format aggregating Java classes
with configuration and meta information.

JSON JavaScript Object Notation, a human readable format for
specification of objects.

Protobuf Protocol Buffers is a method for serializing of structured data.

REST Representational State Transfer, architectural style for
development of distributed applications.

RTC IBM Rational Team Concert, a versioning system.

RTTP Real time traffic plan

SO Shared Object – the extension of dynamic linked libraries in
Unix world.

TMS Traffic Management System

XML Extensible Markup Language

GA 635900 Page 6 of 40

3. Background

This document represents the next step in system design after detailed specification of the

TMS platform in [In2Rail D8.3], [In2Rail D8.4], [In2Rail D8.6], [In2Rail D8.7] and after

developing the application code in the proof of concept prototype in [In2Rail D7.5] in the

framework of the project entitled “Innovative Intelligent Rail” (Project Acronym: In2Rail;

Grant Agreement No 635900).

The document provides concepts for the right part of the system development process: Unit,

integration and partly operational testing (s. Figure 3.1).

Figure 3.1: V-Model of the software development process

The content of this document was developed in parallel with the software development of

the proof-of-concept-prototype described in [In2Rail D7.5], so the approaches presented

here were developed and applied for the testing of the proof-of-concept prototype. This

close cooperation allowed high maturity level of the testing approach for the following

projects in Shift2Rail especially during development of technical demonstrators.

Requirements

Analysis

High Level

Design

Detailed

Specifications

Coding

Unit

Testing

Integration

Testing

Operational

Testing

Review / Test

GA 635900 Page 7 of 40

4. Objective / Aim

The overall objective of Work Package 8 – (WP8) – is to provide the specification of the

architecture, protocols, and functional description of the required services. They should

allow a seamless integration within TMS of:

 external systems like Crew Management, Fleet Management, and Maintenance

Management etc.;

 TMS-specific applications provided by different suppliers, e.g. Timetable

management, Automatic Route setting (ARS), Forecast, Decision support system,

Task management, Route cause analysis etc.

Objective of this deliverable is to provide:

 a description of the testing approach for services managed by Application

Framework;

 a description of common integration tests to be evaluated during test phase.

In opposite to the deliverables [In2Rail D8.4] and [In2Rail D8.7], where the specifications for

Integration Layer and Application Framework are provided, this document represents one

possible approach to implementing testing in the context of IL and AF. Although only a

description of integration testing was planned for this document the nature of Integration

Layer and Application Framework allows the automation of several kinds of tests: module,

integration, function and system tests. In the following sections different aspects of testing

will be considered.

GA 635900 Page 8 of 40

5. Introduction

This document covers a very specific area in software engineering. To be useful in future EU-

projects it goes deep into the specifics of the software testing in connection with

architectural patterns published in other deliverables. Therefore it is dedicated to software

architects, software developers and software testing engineers. To understand this

document it is advisable to read [In2Rail D8.3] first.

Testing is the process of executing a program with the intent of finding errors. [Myers et al

2011].

The test process is strongly integrated into the software development process (see Figure

5.1).

Figure 5.1: Correspondence between development and testing process [Myers et al 2011]

The single test steps are distinguished not only on the input/output relations and their

position in the development process. The single test steps are dedicated to finding different

kinds of errors. They have the following responsibilities:

GA 635900 Page 9 of 40

 Module Test is a process of testing the individual sub-programs, subroutines, classes,

or procedures in a program. The purpose of a module test is to find discrepancies

between the program’s modules and their interface specification [Myers et al 2011];

 Integration Test is the test of correct interaction among all components or services

within a system;

 Function Testing is a process of attempting to find discrepancies between the

program and the external specification;

 System Test is the process of finding discrepancies between the program and its

original objectives. To formulate the test cases [Myers et al 2011] proposes to use

the user documentation;

 Acceptance Test is a process of comparing the program to its original requirements

and the current needs of its end users. In case of contracted program, the contracting

organisation performs the acceptance test by comparing the program’s operation to

the original contract;

 Installation Test has the purpose of finding errors that occur during installation

process.

A high degree of test automation is desired on all levels of testing since the effort of testing

in terms of time and resources can be minimized by this measure. Integration Layer and

Application Framework allow extensive automation in different steps of the test process. To

show these possibilities the TMS prototype developed in the context of the “proof of

concept” [In2Rail D7.5] will be used as a “system under test”.

The TMS prototype follows the micro service architectural pattern [Cambell 2015]

[AmundsenMclarty2016], therefore a typical service (program) contains often only one

module. The structure of the TMS prototype is shown in Figure 5.2.

GA 635900 Page 10 of 40

Figure 5.2: System structure of TMS prototype

As follows from the system architecture all services (programs) communicate with each

other only by means of the Integration Layer service. They have no knowledge about the rest

of the system: which services there are, if they are running or not, and if they work

continuously or event/time based. The Integration Layer itself provides only data

management and communication infrastructure. The data content is specified by Canonical

Data Model described in CDM-Appendix of [In2Rail D9.1]. Specific data structures for

Timetable, Infrastructure, Version Management are specified in [In2Rail D8.4] and [In2Rail

D8.7].

The services in the prototype have the following responsibilities:

 Integration Layer provides the In Memory Data Grid (IMDG) functionality;

 the data is represented as key-value-pairs allocated into “containers” named topics

(or maps);

 the clients (other services) connect to the Integration Layer by a dynamic library;

 the clients can create, read, update, and delete key-value-pairs,

 the clients can observe topics and will receive notifications on any change;

 IMDG builds a cluster resolving single point of failure for data management – as long

as at least one node in the cluster is working, no data is lost;

 persistence service is responsible for storage of key-values located in “important”

topics on persistent disk. In case of disaster (all nodes building the IMDG cluster go

down) the persistence service shall recover the last known state;

Integration Layer

Service

Persistence-

Service

REST-API-

Service

Sandbox

Service

Sandbox2Trips

Service

Automatic

Route Setting

Service

Infrastructure

importer

Service
Planned timetable

importer

Service

ApplicationFramework

Service

Operator’s

Workstation

GA 635900 Page 11 of 40

 REST-API service provides a REST-interface [Masse2011] to the IMDG. It allows

accessing the key-value-pairs in human readable JSON-Format [Bassett2015] using

REST-API;

 Sandbox service manages concurrent change requests coming from different clients

integrating them in to one data set modelled by a sequence of snapshots and delta-

change-sets;

 Sandbox2Trips service extracts single trips building the operational timetable from a

sandbox and publishes them on one of the topics. The automatic route setting

service uses them to set the routes;

 Planned timetable importer is part of the existing TMS which converts proprietary

timetable data into canonical data model-format;

 Infrastructure importer service converts Railml-2.3 topology data into canonical data

model format and appends it to the production sandbox;

 Operator’s Workstation contains several dialogs:

- Timetable editor,

- Track view,

- Sandboxes view,

and allows for several operators’ concurrent modification of the Real Time Traffic

Plan (RTTP);

 Application Framework service reads the desired state of all services (which services

are running and with which topics they are communicating) from a special Topic and

ensures that services managed by the Application Framework apply the desire state.

To do so it starts, stops and monitors the managed services on a node-cluster (set of

computers) managed by the Application Framework.

In the following sections the test steps from Figure 5.1 will be analysed in conjunction with

the TMS prototype.

In short the testing approach used in the prototype development and proposed in this

deliverable can be summarized as following:

 REST-API-Service allows usage of many REST-API-Testing frameworks from the

market [Chakram2018][Django2018][Frisby.js2018];

 a test script inside such REST-API-Testing framework writes key-values over REST-API

influencing services and reads key-values over REST-API analysing the service results;

 Application Framework starts/stops services under test;

 the Test framework runs the tests, collects the test results and represents them in an

appropriate manner (e.g. a web-page-report).

GA 635900 Page 12 of 40

From the variety of REST-API-Testing frameworks the open source framework Chakram was

selected for the prototyping activities. In the following different test scripts will be analysed

covering several steps of the testing process taking services from the prototype as examples.

GA 635900 Page 13 of 40

6. Test environment

In most of test steps up to operational tests some components do not exist and must be

emulated. Even during the acceptance test the connection to external systems could be

missing. If the TMS is based on Integration Layer the standardised communication takes

place there. From the testing point of view the Integration Layer provides crucial features

described in the following.

6.1. Observability of communication

The Integration Layer provides access to the data by publish-subscribe principle. The “data

universe” is separated in Topics. Each Topic represents a map of key-value-pairs. Any client

with sufficient access rights is able to subscribe to any Topic and write to any Topic (see

Figure 6.1).

Figure 6.1: Topic example in Integration Layer

Any service influences the remaining part of the system only by publishing new states of key-

value objects on Integration Layer. As a consequence to emulate the missing parts of the

system it is sufficient to publish “appropriate” key-value-states on Integration Layer to allow

running services to react. This reduces the test efforts quite strongly: instead of developing

emulated subsystems in software, it is enough to formulate the messages in a test script and

let the existing test framework emulate missing subsystems.

6.2. REST-based API

The main method to connect to Integration Layer represents a dynamically linked library (dll,

so- or jar-library). The values in key-value-pairs are represented by a binary protocol e. g.

GA 635900 Page 14 of 40

[Protobuf2017]. Both specialities prevent usage of general testing frameworks from the

market:

 the API-calls to DLL required to access the data are not supported;

 a special treatment (encoding and decoding) of the messages is typically not

supported.

To overcome these issues the Integration Layer includes a special service providing a REST-

based API [Masse2011]. That means the test framework is able to create, read, update and

delete any key-value-pair on Integration Layer using standardized HTTP-protocol solving the

first issue with the DLL – it is not required for the testing (see Figure 6.2 below).

Figure 6.2: Access of Integration Layer through REST-API service

The REST-standard assumes the object representation either in XML or in JSON format. The

REST-service converts binary representation of the value into JSON and back for the input. A

test framework usable in this case is associated with the term “REST API Testing”. A web-

search with this string returns over 6 Mio hits containing many tools and theoretical

discussions on the subject.

The major drawback of this approach is the additional delay introduced by the REST-API-

Service:

 the HTTP protocol with JSON data representation consumes about 10 times higher

bandwidth in comparison to binary protocol with enabled compression;

 conversion JSON<->Protobuf could consume considerable computational resources

on the node running the REST-Service. In bigger test cases several instances of the

REST-Service might be required for load balancing.

As a consequence the REST-API cannot be used for performance evaluation of the

Integration Layer. But it is still sufficient for testing the service performance as the

communication part of the total service response time is often negligible.

GA 635900 Page 15 of 40

The REST-API is planned to be used not only for testing purposes but for connection of “low-

performance” services, where the throughput and round-trip times are not critical, e.g. a

timetable import every four hours is often allowed to take several minutes, so the

communication time of about one second is acceptable.

6.3. Test environment setup and organisation

For the proof-of concept in WP7 the open source REST-API testing framework Chakram

[Chakram2018] has been selected. It is based on node.js [Cantelon et al 2017] which is a

JavaScript framework. As JSON represents native JavaScript-Code the possibility to write test

scripts in JavaScript simplifies handling of the IL-Messages: the logic can be applied on the

input message directly and to send a new message a normal JavaScript-object can be used.

The plug-and-play infrastructure provided by the Application Framework opens new

possibilities and challenges in system deployment: instead of integrated development of the

entire big system by one vendor, services coming from several vendors can be integrated

together. To ensure that the delivered service is installed properly, the service vendor should

provide an installation test-service as a part of its delivery (see Figure 6.3).

Figure 6.3: Test setup for productive service to be provided by service vendor

With increasing number of such “independent” services the availability of the automated

(installation) tests appears to be crucial to keep the system stable and manageable.

6.4. Test implementation approaches

As shown in the previous chapters tests can be implemented using different approaches. An

obvious one is to use an external testing framework to produce inputs, observe and analyse

outputs of the service (Figure 6.4).

Application Framework

Service under test

Installation test

(Test scripts incl.

test framework)

REST-API

Service

Integration Layer

GA 635900 Page 16 of 40

Figure 6.4: Test setup with an external testing framework

The main advantage of this approach is: it is independent from the programming language,

operating system, CPU architecture etc. of the service under test. Therefore this kind of tests

can be implemented and managed by the system integrator. As it is typically not the

responsibility of the integrator to test the entire functional behaviour, most of the tests shall

be implemented by the service vendor.

As the owner of the source code and the development environment, the service vendor has

additional degrees of freedom for selecting an appropriate test setup. The service vendor is

facing to competing test objectives:

 test-runs should be implemented efficiently (fast);

 even for small (micro) services the number of tests can reach hundreds;

 each build typically requires running all (or at least as many as possible) automated

test. Unnecessarily long running (slow) tests would significantly reduce the effectivity

of the developers, while they are waiting for the test results;

 test should be as similar as possible to the production use. In case of IL-based

services, they should be connected to the IL later used in the production, which

requires setup and management of an integration Layer for each testing

environment.

A possible solution for this situation is shown in Figure 6.5. As the IL-based services expose

its functionality over IL the tests scripts can be implemented as API-testing over IL.

GA 635900 Page 17 of 40

Figure 6.5: Reuse of function test for "fast" and for "productive" test runs

If the testing code is not aware of the implementation of the IL, two test setups can be

constructed by the build environment:

 connecting test code through the emulated Integration Layer with a library of the

service under test allows a very fast test execution: no overhead for communication

with an external IL and time required for starting/stopping/managing the external IL;

 connecting the same test code to the productive IL allows reusing hundreds of test

cases on productive environment and can be delivered together with the service

implementation. This test setup is able to implement unit, integration and functional

tests in micro service architecture.

In the following examples for test implementations for different services in the In2Rail-

Proof-of-concept-prototype will be discussed.

Sandbox Management

service (dll)

Sandbox Functional

test (executable)

Integration

Layer (emulator)

Sandbox Management

service (executable)

Sandbox Functional

test (executable)

Integration

Layer (dll)

Integration

Layer (dll)

Integration

Layer

GA 635900 Page 18 of 40

7. Module tests

Module testing (also called unit testing) is a process of testing the individual components

building a program: class, method, library (a set of classes). The purpose of the module

testing is to compare the function of the module with an existing specification either as a

functional or interface specification.

Module testing covers “private” modules known only to the service vendor. The functional

or interface specifications are results of internal development steps during the service

development. As the module test strategies are very vendor specific this chapter gives only a

short overview on the module testing and provides some hints, how to increase test

execution performance in conjunction with Integration Layer.Consider a program as a

combination of modules with some call hierarchy a possible program structure can look like

Figure 7.1.

Figure 7.1: Sample program with connection to Integration Layer

Module A uses (calls) modules B, D, E. Module G interacts with the Integration Layer.

Module test scripts are typically combined to test suites, which are executed by some test

framework like Boost Test Library, Google Test, and JUnit. In the context of larger software

projects a big amount of such test scripts (several hundreds) are coming together.

The Module tests are typically repeated as “regression tests” – a build of a new version is

considered as successful only if the associated unit tests don’t find errors. As a consequence

of the large number of tests and frequent test executions the test execution time plays

significant role for software development especially at the end of the project. To reduce

execution time and simplify test setup a local “Test-version” of the Integration Layer could

be created. As the object oriented interface of IL is specified in [In2Rail D8.4], the local IL

represents a managed set of maps (which are typically part of standard libraries in C++,

Java…). Compiled as a library it can be used in test running suites reducing execution time by

at least one order of magnitude.

Another advantage of a generic implementation for the Testing-IL is the possibility to reuse it

in many module-tests for programs using IL. Instead of a local Test-version of the IL a server-

GA 635900 Page 19 of 40

less implementation can be used, e.g. DDS based wrapper [In2Rail D8.3]. This approach

extends the test execution time as it tries to find connected systems during login procedure.

Afterwards it works the same way as the local IL.

GA 635900 Page 20 of 40

8. Integration Tests

Integration Testing represents a step in the test process where single modules/programs are

combined and tested as a group. The purpose of this step is to find errors in the interaction

between modules/programs. In [Myers et al 2011] the integration testing is not considered

as a separate testing step, as it is an implicit part of the incremental module testing.

In this document a combination of services/programs is considered under integration tests,

while modules of a single program are not taken into account.

Two kinds of integration testing can be identified:

 component integration testing, with the purpose to expose faults in the interfaces

and interaction between integrated components;

 system integration testing, testing the integration of systems, including interfaces to

external systems (organisations).

In the following only the component integration testing is considered. As the Integration

Layer is used only for components integration no generic approach can be provided for

system integration testing.

The main advantage of the Integration Layer represents the fact that no components

interact with each other directly, but only by means of IL. This reduces the component

integration tests to the test of a single service integrated into the Integration Layer (Figure

8.1).

Figure 8.1: Integration test setup of a service within Integration Layer

As the integration of API with the Integration Layer is already tested by the IL-vendor, the

integration test is responsible for correct usage of the API by the service under test. This is

typically part of the API implementation, which always validates the service requests for

correct message format.

In a future TMS it is assumed that the life cycle of some services will be managed by

Application Framework. To allow that functionality the Application Framework should

interact with these services using a mean other than IL. Therefore the main use case for the

integration testing would be the integration of a managed service into the Application

Framework (see Figure 8.2).

Service under

test

Pre-tested API

implementation

Integration Layer

GA 635900 Page 21 of 40

Figure 8.2: Integration of a service into Application Framework

In the proof-of-concept prototype the Application Framework was implemented based on

Docker Swarm technology [Farcic2017].

The Application Framework has the following responsibilities:

 deploy a service on the cluster (Docker Swarm uses an extra registry service as an

image source);

 provide a set of values to the service through environmental variables to allow the

service to start interaction with Integration Layer;

 if needed provide persistent volume(s) and notify the service about its “position”

through environmental variable;

 provide a port mapping between the service ports and the host ports. The main use

case for the port mapping is connection of external systems to the managed service;

 ensure that required number of service instances is running;

 monitor the service instances – activity, centralised logging, fail/restart history etc.

The Application Framework is controlled using Integration Layer. On a specific topic

“AFDesiredStates” on the Integration Layer key-value-pairs represent required states of the

services. The Application Framework compares the desired state with its observations and

initiates actions if it detects differences. The Application Framework publishes its

observations on “AFCurrentStates”-topic. Access of the AF-functionality through the

“AFxxxStates”-Topics allows using the same testing framework as for function tests of the

single services (s. Figure 8.3).

GA 635900 Page 22 of 40

Figure 8.3: Example of a sequence diagram for an integration test

8.1. Use case “Persistence service”

In the following a test script for integration test of the persistence service is shown. The

“desired state” for the service is in the file “persistence_service_spec.json”

{

 "Name" : "persistence_service",

 "ContainerSpec" : {

 "Image" : "registryhost/persistence_service:2.1",

 "Mounts" : [{

 "Source" : "data",

 "Target" : "/var/data",

 "Type" : "volume",

 "Consistency" : "consistent"

 }],

 "Env" : [

 "topicsListTopic=internalTopics"

]

 }

 "Placement" : {

 "Constraints" : ["node.persistence_role==true"],

 "Platforms" : [{

 "Architecture" : "x68_64",

 "OS" : "linux"

 }]

 },

 "Mode" : {
 "Replicated" : {

Integration

Layer

Test

Script

Application

Framework

Operating

system

Desired state:

service A one

instance

Current state:

service A one

instance

wait

Managed

service A

Service configuration (input Topics/output Topics)

Operation
(Function

tests)

Finish

integtest

GA 635900 Page 23 of 40

 "Replicas" : 1

 }

 }

}

The service specification follows Docker-Swarm API, assuming that the mapping to other

similar products would be easily possible

https://docs.docker.com/engine/api/v1.35/#operation/ServiceCreate. The content of the

request is defined in Table 8.1.

Attribute Description

ContainerSpec.Name Name, version and location of the image.

ContainerSpec.Mounts List of “disks” provided to container from the host

ContainerSpec.Mounts.Source Name of the volume on the host. Docker and
Kubernetes provide an abstraction for Volume –
named storage, which can be a special service on the
cloud or a normal directory on the host.

ContainerSpec.Mounts.Target Directory at which the volume is mounted inside of
container.

ContainerSpec.Mounts.Type Type can be either volume (abstraction) or bind
which represents a normal directory on host.

ContainerSpec.Mounts.Consistency Consistent means that data written by the
service is immediately provided to the host to be
written in the volume. If the loss of couple of seconds
of data is acceptable the load introduced by the
persistence_service can be reduced by allowing the
system to provide written data in batches with a
value delegated.

ContainerSpec.Env This attribute allows providing environmental
variables to the container. In this case the topic for
the list of topics is specified, used by the service to
identify topics to be persisted.

Placement.Constraints Allows specifying on which types of hosts the service
shall be executed. In this case only hosts with the
label node.persistence_role==true are allowed.

Placement.Platforms.Architecture The service inside the container represents a binary
executable, which is specific to the processor
architecture. If the Docker Swarm Cluster contains
heterogeneous nodes the architecture requirements
must be specified.

Placement.Platforms.OS Specifies required Operating System on the host.

Mode.Replicated.Replicas Specifies the number of instances of the service,
which shall be executed concurrently. In case of
persistence_service one instance is typically
sufficient.

Table 8.1: Attributes description for persistence_service

A test script using Chakram-API-Test-Framework [Chakram2018] covering integration of the

persistence service into Application Framework can be as follows.

https://docs.docker.com/engine/api/v1.35/#operation/ServiceCreate

GA 635900 Page 24 of 40

Integtest_spec.js

var call = require('chakram');

expect = call.expect;

var delay = require('timeout-as-promise');

//reading persistence service specification (s. above)
serviceSpec = require('persistence_service_spec.json');

//configuration for hosts/urls/etc required for the test

testConfig = require('testConfig.json');

appUrl = testConfig.APP_URL;

//start test suite
describe("Integration test for persistence_service", function () {

 //max waiting time for http response

 this.timeout(1000);

 it('start and stop persistence service', function () {

 return call.post(appUrl + "/afdesiredservices/values/", serviceSpec)

 .then(function(r1) {

 expect(r1).to.have.status(200);

 //waiting testConfig.delay (5 seconds) until the service
 //is asynchronously installed and started
 return delay(testConfig.delay);

 })

 //after waiting time read current state of persistence_service
 .then(function() {

 return call.get(appUrl +

"/afactualservices/values/persistence_service");

 })

 //if ok, delete the persistence service
 .then(function(r2) {

 expect(r2).to.have.status(200);

 //stop the service by deleting its key from desired services
 return call.delete(appUrl +

"/afdesiredservices/keys/persistence_service");

 })

 //wait 5 seconds
 .then(function(r3) {

 return delay(testConfig.delay);

 })

 //check that persistence_service is not there any more
 .then(function() {

 return call.get(appUrl +

"/afactualservices/values/persistence_service").then(function(r4) {

 expect(r4).to.have.status(404);

 });

 });

 });

});

GA 635900 Page 25 of 40

9. Function tests

According to [Myers et al 2011]:

The purpose of a function test is to show that a program does not match its external

specifications.

In the following two services will be analysed as examples for the function tests:

 persistence service representing a constituent of the Application Framework;

 sandbox management service representing a constituent of the Integration Layer.

First the requirements of the services will be summarized representing external specification

of the program. Then the possibilities for implementing function tests for each service will be

shown.

9.1. Persistence service

As a first example, the persistence service from the proof-of-concept prototype is

considered (see Figure 5.2). The persistence service has only one responsibility: Restoring

the content of the Integration Layer upon request (requirement 5.2.2.5 in [In2Rail D8.1]).

The Integration Layer manages its data in an In Memory Data Grid (IMDG). As long as

sufficient number of nodes running the IMDG are online all the data is safe even in case of

failure of some nodes executing IMDG. The persistence service has a role of a backup system

for the case of major disaster (failure of all nodes of the Integration Layer). During the

service development it can be used to setup initial system configuration.

To fulfil the assigned functionality the persistence service:

 observes the list of topics available in IMDG;

 subscribes to topics annotated as “PERSISTENT” and stores their current state on

disk;

 if started with the request “Restore”, reads stored key-value-pairs from the disk and

publishes them on Integration Layer;

 if started without the request “Restore” adjusts outdated key-values on disk to the

current state of IL.

The test script for the function test is similar to the one for integration test.

9.1.1. Test case 1

A high level test description is provided in Table 9.1 and the single test steps are listed in

Table 9.2.

GA 635900 Page 26 of 40

Test case 1 – Functional test for persistence service

Precondition  Redundant servers running IL are started
 Application Framework is started
 REST-API service is started
 Image for the Persistence Service is pushed into service

registry of the Application Framework

Test Description Test the main function of persistence service to restore last
state of the Integration Layer

Expected Test Case
Result

All topics annotated with PERSISTENT durability are restored
after simulated crash of Integration Layer.

Table 9.1: Test description for backup-test of persistence service

Test
Step

Action Expected Result

1 Start Persistence Service Persistence service is running.

2
Create TestTopic1 with
persistency and data type 1

TestTopic1 is available.

3
Create TestTopic2 with
persistency and data type 2

TestTopic2 is available

4

Fill TestTopic1 and
TestTopic2 with pseudo-
random data for defined
time interval including all
CRUD operations.

TestTopics1 and TestTopic2 have key-values.

5 Stop Persistence Service Persistence Service is not running

6
Remove TestTopic1 and
TestTopic2

TestTopic1 and TestTopic2 are not available.

7
Start Persistence Service
with “restore”-request

Persistence Service is running, TestTopic1 and
TestTopic2 are available and contain the same key-
values as after step 4.

Table 9.2: Test steps for backup-test of persistence service

9.1.2. Test case 2

In this test the failover functionality of the Persistence Service shall be tested. In case of a

failure the service shall not modify any value on IL after restart, but it shall be able to recover

the Integration Layer if restarted with “restore request”.

A high level test description is provided in Table 9.3 and the single test steps are listed in

Table 9.4.

Test case 2 – Functional test for persistence service

GA 635900 Page 27 of 40

Precondition  Redundant servers running IL are started
 Application Framework is started on one node
 REST-API service is started
 Image for the Persistence Service is pushed into service

registry of the Application Framework

Test Description Test for failover of the persistence service itself.

Expected Test Case
Result

After failover the persistence service does not modified anything
on Integration Layer is able to restore IL after one minute latest.

Table 9.3: Test description for failover

Test
Step

Action Expected Result

1 Start Persistence Service Persistence service is running

2
Create TestTopic1 with
persistency and data type 1

TestTopic1 is available

3
Create TestTopic2 with
persistency and data type 2

TestTopic2 is available

4

Fill TestTopic1 and
TestTopic2 with pseudo-
random data for defined
time interval including all
CRUD operations.

TestTopics1 and TestTopic2 have key-values

5
Kill the processes assigned
to Persistence Service

Persistence Service is not yet running

6 Repeat step 4
TestTopic1 and TestTopic2 have different content as
after step4

7
Check the state of
Persistence Service

Persistence Service is running as it is restarted by
Application Framework

8 Stop Persistence Service Persistence Service is not running

9
Remove TestTopic1 and
TestTopic2

TestTopic1 and TestTopic2 are not available on IL

10
Start Persistence Service
with “restore”-request

Persistence Service is running, TestTopic1 and
TestTopic2 are available and contain the same key-
values as after step 7.

Table 9.4: Test steps for persistence service failover test

9.2. Sandbox management service

The sandbox management service provides a versioning control for data requiring

transactional behaviour (requirement 2.3.3 in [In2Rail D8.1]). A good metaphor represents

file versioning systems like Git, Mercurial, and IBM Rational Team Concert (RTC). The

versioning system RTC even has a term “stream” representing a sequence of modification. It

builds the basis for cooperation between developers and teams [RTC2018].

The sandbox management service keeps a list of snap-shots and delta updates consistently

synchronising change requests from concurrent client applications (see Figure 9.1).

GA 635900 Page 28 of 40

Figure 9.1: Sandbox management service

Depending on the configuration of the Sandbox Management Service can apply additional

logic to the change requests:

 validation steps to check access rights of the client to specific part of the model;

 merging of change requests to already applied deltas, if it is acceptable for the

managed sandbox.

The validation process can be externalized to an additional service, which observes the

“ChangeRequestTopic” and puts results of validation to “ValidatedRequestTopic”, observed

by Sandbox management service.

In the following two subsections of the function “Creation of a new sandbox” will be shown.

In Appendix A a test script evaluates concurrent change requests. In Appendix B a model

based functional test for the remaining functions is presented:

 appending new change requests;

 merge change requests if possible;

 undo one or more change requests;

 accept sandbox;

 cancel sandbox.

9.2.1. Major functions testing

The high level of the test description is defined in Table 9.5. The required test steps are

shown in Table 9.6.

Test case 1 – Functional test for Sandbox Management Service

GA 635900 Page 29 of 40

Precondition  Redundant servers running IL are started
 Application Framework is started
 REST-API service is started
 Image for the Sandbox Management Service is pushed into

service registry of the Application Framework

Test Description Test creation of a sandbox, handling of concurrent change
requests, handling of undo requests, accept sandbox, remove
sandbox.

Expected Test Case
Result

The changes introduced to the test sandbox appear in the
parent sandbox.

Table 9.5: Test description Sandbox management service

Test
Step

Action Expected Result

1
Start Sandbox Management
Service

Sandbox Management Service is running.

2
Request to create a new
sandbox

Three additional topics are created:
 Change Requests
 Replies
 Sandbox itself

3

Emulate concurrent requests
from three clients with
pseudo-random requests
including Undo-Requests

Consistent state of the sandbox, with reasonable
replies.

4
Request to accept the
sandbox

The change sets of the sandbox are combined together
and appended to the parent sandbox.

5
Request to remove the
sandbox

Topics assigned to the sandbox are empty and
removed.

Table 9.6: Test steps for sandbox management service

9.2.2. Failover functionality

Main functions defined above are relatively easy to test. The next important aspect of the

testing is the failover-functionality. The Sandbox Management Service is intended to be

state-less – the entire state is represented on the Integration Layer to any point of time. To

achieve high performance implementation developers often use caching strategies and

“copy” the IL-state in the local memory of the application.

The Sandbox Management Service requires transactional behaviour, e.g. if it creates a new

sandbox is shall open three different topics, and append the new sandbox configuration into

the sandbox-list in a fourth topic. If one of the steps fails, the already implemented steps

must be rolled back. The most interesting aspect in this context represents a service/node

crash and restarting a new service instance on some other node. In this case the Sandbox

Management Service must identify the current state and continue with implementation of

GA 635900 Page 30 of 40

already started transactions. The logic behind this process could be quite complicated, so a

set of dedicated test cases must be provided.

The Sandbox Management Service manages several transactions in parallel:

 sandbox creation/removal;

 management of one sandbox – accepting change requests from concurrent users;

 management of sandbox acceptance – “moving” the content from one sandbox to

another one.

One possible state sequence for sandbox creation process is shown in Figure 9.2. The

Sandbox Management Service can fail/crash at any arrow connecting activities in the

sandbox creation process. Failures during the activities are managed by Integration Layer – it

ensures, that value modification message is either accepted properly or ignored.

Figure 9.2: Steps in the process of sandbox creation

In Figure 9.2 ten arrows are available, so the newly started Service shall be able to continue

the sandbox creation at any of them. An additional difficulty is that, the service

implementation could have a different sequence of the steps, e. g. first create a changeSets-

Topic and then the Notifications-Topic, so the number of possible states at the service start

Register new

topic

„requests“

Register new

topic

„notifications

“

Register new

topic

„changeSets“

Wait for

topics to be

created

Add a new

sandbox

entry into list

Wait until

sandbox entry

is in the list

Send

notification

about success

Wait until

notification

reaches IL

Delete request

from IL

Wait until

request is

deleted from IL

Finish Sandbox

creation and

start handling

GA 635900 Page 31 of 40

is 2^4=16: each of the six aspects (topics, entry in the sandbox list, notification etc.) is either

there or not. An exhaustive test would require coverage of each of them.

As the Sandbox Management Service manages three transactions concurrently (listed above)

the number of possible states increases further to theoretically 3^16. Assuming that the

process handling is independent from each other it is a reasonable assumption to consider

only 3*16=48 states. Creation of such initial states can be easily automated, so running of 50

test cases for failover functionality for this crucial service is still reasonable.

A general approach in this case is to prepare the state on the Integration Layer, start the

Sandbox Management Service and analyse the result after some time. Examples of such

tests are shown in Appendix C.

GA 635900 Page 32 of 40

10. System tests

According to [Myers et al 2011]

“the purpose of a system test is to show that the product is inconsistent with its original

objectives.”

The main issue in this definition is the term “objectives” as the documents describing

objectives of a product do not contain precise description of the product’s external

interfaces needed to define test scripts. Therefore [Myers et al 2011] proposes to use the

user documentation to formulate the test cases: “design the system test by analysing the

objectives; formulate test cases by analysing the user documentation”.

At the current state of the In2Rail project, the objectives of IL are described in [In2Rail D8.3],

[In2Rail D8.4] and objectives of AF in [In2Rail D8.5] and [In2Rail D8.7]. The user

documentation for IL and AF is not available as it depends on specific products selected as

basis for IL and AF. The test cases were defined based on the selected products Hazelcast for

IL and Docker Swarm for AF.

The system tests comprise several test categories (see Table 10.1). Some of the tests for the

prototype in the proof-of-concept were automated in the project, while others were

implemented manually.

Category Description
Test method in

In2Rail WP7

Facility
Ensure that the functionality in the objectives is
implemented.

Manual

Volume
Subject the program to abnormally large volumes of
data to process.

Automated

Stress Subject the program to abnormally large loads. Automated

Usability
Determine how well the end user can interact with the
program.

Manual

Security Try to subvert the program’s security measures. Ignored

Performance
Determine whether the program meets response and
throughput requirements.

Automated

Storage
Ensure the program correctly manages its storage
needs, both system and physical.

Automated

Configuration
Check that the program performs adequately on the
recommended configurations.

Automated

Compatibility
Determine whether new versions of the program are
compatible with previous releases.

Manual

Installation
Ensure the installation methods work on all supported
platforms.

Manual

Reliability
Determine whether the program meets reliability
specifications such as uptime and MTBF.

Automated

Recovery Test whether the system’s recovery facilities work as Manual

GA 635900 Page 33 of 40

Category Description
Test method in

In2Rail WP7

designed.

Maintenance
Determine whether the application correctly provides
mechanisms to yield data on events requiring technical
support.

Manual

Documentation Validate the accuracy of all user documentation. Ignored

Procedure
Determine the accuracy of special procedures required
to use of maintain the program.

Ignored

Table 10.1: Categories of test cases according to [Myers et al 2011]

A possible test case is shown in Table 10.2. From the table follows that this kind of tests is

planned to be implemented manually at least in the context of the proof of concept. In this

test aspects facility, performance, and usability were evaluated.

Test script 1 – System test

Test
Step

Action Expected Result
Result

OK/nOK
Remark

1
Start 10 operator’s
workstations

Operator’s workstations are running,
the users can login in. The views are
empty.

2 Start Integration Layer
IL is running. Running operator’s
workstations not the status
“connected”.

Stress-
test for
IL-login

3
Import offline
timetable

The IL-Explorer shows the published
request for timetable import.
Operator’s workstations show
nothing.

4
Start timetable
management service

Timetable management is running.
Operator’s workstations show initial
offline timetable available.

5
Start persistence
service

The persistence service is running. On
the assigned volume there are files for
each “persistent” topic on IL.

6

Create production
timetable out of the
planned timetable on
one of the operator’s
workstations.

All operators’ workstations are able to
show production timetable.

7
Start Automatic route
setting

ARS is running. Current production
trips are imported.

8
Start traffic emulation
service

Emulation system is started. The
operator’s workstations show current
state of traffic – train positions, signal
aspects, switch positions.

GA 635900 Page 34 of 40

Test script 1 – System test

Test
Step

Action Expected Result
Result

OK/nOK
Remark

9
Start further 10
operators’
workstations

The new workstations have the same
state as already started once. The CPU
load on nodes running Integration
Layer increases by factor 2 maximum.
No additional delays are detectable
for manual operations on
workstations.

10
Switch off one of the
nodes running
Integration Layer

The CPU load on remaining node
increases by factor 2 maximum. No
client observed lost connection. All
clients continue operation without
interruption.

Table 10.2: Example test script for manual system test of Integration Layer

Using the setup in Figure 10.1 automated tests for Volume, Stress were created by providing

emulated load from operator and traffic processes.

Figure 10.1: Setup for testing IL-objectives

The achieved performance was evaluated by the monitoring service, which observed:

 performance of the services by compares time intervals between published requests

and responses on the integration layer;

 performance of the Integration Layer by comparing time stamps issued by the

message writer and message arrival times at the service.

Achieved results were then compared with the system requirements defined in [In2Rail

D8.1].

Integration Layer

Operator’s

workstation
Operator’s

workstation

Operator’s

work

emulation

…

Persistence

service

Timetable

service

Application

Framework

service

Automatic

Route setting

service

Traffic

emulation

service

Monitoring

service

GA 635900 Page 35 of 40

11. Conclusions

Hard and expensive testing of a multi-vendor distributed system can gain a great advantage

from the selected architecture for future TMS. Using a simple test script it allows to

automatically deploy, configure, connect, stimulate and observe the behaviour of the

building blocks. This introduces repeatability of the testing process, reduces update times

and the overall life-cycle costs.

Standardisation of the communication technology opens the TMS market for new functions

coming from different vendors. But only the automated tests allow a reasonable integration

and management of a multi-vendor installation in context of system with high availability,

high performance, high security, and high safety requirements.

The market of testing automation solutions is big as well. COTS tools allow structuring test

cases, simplify observing the system behaviour and provide extensive representation of the

test results. To enable this functionality the Integration Layer with a high performance

specific API is extended with a REST/JSON-Interface. Most of the unit, integration and

functional test can be covered through this interface. To evaluate volume, stress and

performance aspects in system tests the high performance API is still the preferred solution.

The next step in the testing automation would be integration of the testing results into

Integration Layer. If each vendor delivers an installation test together with his service, the

test results representation shall be harmonized and “stored” in Integration Layer. This would

create an impression of an integral system hiding “specialities” of each service vendor from

the maintenance team.

The future Shift2Rail projects will cover different aspects and functionalities building a future

TMS. This document shows to the developers how to take advantages of the TMS-

architecture to simplify and automate testing. This could build a basis for demonstrating the

achieved TRL.

GA 635900 Page 36 of 40

12. References

[AmundsenMclarty2016] M. Amundsen, M. Mclarty: Microservice Architecture: Aligning
Principles, Practices, and Culture. O’Reilly, 2016

[Bassett2015] L. Bassett: Introduction to JavaScript Object Notation, O’Reilly,
2015

[Cambell2015] E. Cambell: Microservices Architecture: make the architecture of
a software as simple as possible, 2015.

[Cantelon et al 2017] M. Cantelon, A. Young, M. Harter, TJ _Holowaychuk, N. Rajlich :
Node.js in Action, Second Edition.

[Chakram2018] http://dareid.github.io/chakram/
[Django2018] http://www.django-rest-framework.org
[Farcic2017] V. Farcic: The DEVOPS 2.1 Toolkit: building, testing, deploying,

and monitoring services inside Docker Swarm Cluster. Leanpub,
2017

[Frisby.js2018] www.frisbyjs.com
[In2Rail D7.5] In2Rail Project, Grant Agreement H2020-MG-2014-635900 – D

7.5 Evaluation of the proof of concept – 30/04/2018
http://www.In2Rail.eu/

[In2Rail D8.1] In2Rail Project, Grant Agreement H2020-MG-2014-635900 – D
8.1 Requirements for the Integration Layer – 30/10/2016
http://www.In2Rail.eu/

[In2Rail D8.3] In2Rail Project, Grant Agreement H2020-MG-2014-635900 – D
8.3 Description of Integration Layer and Constituents –
30/04/2018 http://www.In2Rail.eu/

[In2Rail D8.4] In2Rail Project, Grant Agreement H2020-MG-2014-635900 – D
8.4 Interface Control Document for Integration Layer Interfaces,
external/Web interfaces and Dynamic Demand Service–
30/04/2018 http://www.In2Rail.eu/

[In2Rail D8.5] In2Rail Project, Grant Agreement H2020-MG-2014-635900 – D
8.5 Requirements for the Generic Application Framework –
30/09/2016, http://www.In2Rail.eu/

[In2Rail D8.6] In2Rail Project, Grant Agreement H2020-MG-2014-635900 – D
8.6 Description of the Generic Application Framework and its
constituents – 30/07/2017, http://www.In2Rail.eu/

[In2Rail D8.7] In2Rail Project, Grant Agreement H2020-MG-2014-635900 – D
8.7 Interface Control Document (ICD) for Application-specific
Interfaces – 30/07/2017, http://www.In2Rail.eu/

[In2Rail D9.1] In2Rail Project, Grant Agreement H2020-MG-2014-635900 – D
9.1 Asset status representation– 30/04/2018,
http://www.In2Rail.eu/

[Masse2011] M. Masse: REST API Design Rulebook, O’Reilly, 2011.
[Myers et al 2011] G.J. Myers, C. Sandler, T. Badgett: The Art of Software Testing. 3rd

Edition, Wiley, 2011
[Protobuf2017] https://developers.google.com/protocol-buffers
[RTC2018] https://www.ibm.com/us-en/marketplace/change-and-

configuration-management

http://dareid.github.io/chakram/
http://www.django-rest-framework.org/
http://www.frisbyjs.com/
http://www.in2rail.eu/
http://www.in2rail.eu/
http://www.in2rail.eu/
http://www.in2rail.eu/
http://www.in2rail.eu/
http://www.in2rail.eu/
http://www.in2rail.eu/
http://www.in2rail.eu/
https://developers.google.com/protocol-buffers
https://www.ibm.com/us-en/marketplace/change-and-configuration-management
https://www.ibm.com/us-en/marketplace/change-and-configuration-management

GA 635900 Page 37 of 40

13. Appendix A

Example of an REST API tests evaluating sandbox-service.

var call = require('chakram');

expect = call.expect;

testConfig = require('../config.json');

expected = require('./../response.json');

describe("manage topics in Domain", function () {

 this.timeout(100000);

 var i = 0;

 it('get list of topics', function () {

 return call.get(testConfig.APP_URL +

"/internalTopics/values/").then(function(r) {

 expect(r).to.have.status(200);

 console.log("Response time " + r.responseTime + " ms");

 });

 });

 it('create sandbox Adam and write two values', function() {

 var createSBCmd = {sandboxId:"Adam", command:"CREATE_EMPTY_SANDBOX",

createInfo:{name:"Adam", persisted:false, basisSandbox:"OnPP"}}

 return call.post(testConfig.APP_URL +

"/SBMgmtCommandsOnPP/values/rcmd", createSBCmd)

 .then(function(r) {

 if(r.status != 200)

 console.log("Error reason: " + r.response.body);

 expect(r).to.have.status(200);

 return call.get(testConfig.APP_URL + "/SBMgmtListOnPP/values");})

 .then(function(r) {

 expect(r).to.have.status(200);

 var r2 = r.response.body;

 expect(r2.length).to.equal(1);

 var r3 = r2[0];

 expect(r3.key).to.equal("Adam");

 expect(r3.value.name).to.equal("Adam");

 expect(r3.value.basisSandbox).to.equal("OnPP");

 var addTTMCmd = {nextChangeSetId:0, cs: {

 timestamp:"1511132365",

 sender:"TestScript", commands:[{

 objectRef: "/",attributeId:2, value: {

 stringValue:"testTTM5"

 }

 }]

 }};

 return call.post(testConfig.APP_URL +

"/SBRequestsOnPPAdam/values/r5", addTTMCmd).then(function(r) {

GA 635900 Page 38 of 40

 if (r.status != 200)

 console.log("Error reason: " + r.response.body);

 expect(r).to.have.status(200);

 expect(r.responseTime).to.be.below(130);

 addTTMCmd.nextChangeSetId = 0;

 return call.get(testConfig.APP_URL +

"/SBChangeSetsOnPPAdam/values").then(function(r) {

 expect(r).to.have.status(200);

 expect(r.responseTime).to.be.below(130);

 var r2 = r.response.body;

 expect(r2.length).to.equal(1);

 var r3 = r2[0];

 expect(r3.value).to.deep.equal(addTTMCmd.cs);

 addTTMCmd.nextChangeSetId = 1;

 addTTMCmd.cs.timestamp = "1511132366";

 addTTMCmd.cs.commands[0].value.stringValue = "testTTM6";

 return call.post(testConfig.APP_URL +

"/SBRequestsOnPPAdam/values/r4", addTTMCmd).then(function(r) {

 expect(r).to.have.status(200);

 expect(r.responseTime).to.be.below(130);

 return call.get(testConfig.APP_URL +

"/SBChangeSetsOnPPAdam/values").then(function(r) {

 expect(r).to.have.status(200);

 expect(r.response.body.length).to.equal(1);

 expect(r.response.body[0].value).to.deep.equal(addTTMCmd.cs);

 expect(r.responseTime).to.be.below(130);

 });

 });

 });

 });

 });

 });

});

GA 635900 Page 39 of 40

14. Appendix B

Example of functional test implementation in C++, able to run with emulated IL and

productive IL.

BOOST_AUTO_TEST_CASE(testCreationOfSBEntries)

{

 boost::asio::io_service io_service;

 {

 ImdgClientLocal client(io_service);

 Service service;

 service.setClient(&client);

 int result = service.start(config, io_service);

 boost::asio::deadline_timer testTimer(io_service);

 TestTaskQueue taskQueue(&testTimer);

 taskQueue.addTask(1000,

 new CreateSandbox(&client, "Paul", "OnPP"));

 Model model;

 TestTask *mkCmd = new CreateSandboxCommand(&client,

 "SBRequestsOnPPPaul", &model);

 TestTask *undoCmd = new UndoSandboxCommands(&client,

 "SBRequestsOnPPPaul", &model);

 taskQueue.addTask(6000, mkCmd);

 for (size_t i = 1; i != 100; ++i)

 {

 int r = rnd(0, 10);

 if (r == 1)

 taskQueue.addTask(100, undoCmd);

 else

 taskQueue.addTask(rnd(10, 100), mkCmd);

 }

 taskQueue.addTask(1000, new CheckSandboxCommands(&client, "Paul",

 "OnPP", &model));

 taskQueue.addTask(10, new CreateSandbox(&client, "OnPP", ""));

 Model parentModel;

 taskQueue.addTask(100, new AcceptSandbox(&client,

 "SBRequestsOnPPPaul", &model, &parentModel));

 taskQueue.addTask(100, new CheckSandboxCommands(&client,

 "OnPP", "", &parentModel));

 taskQueue.addTask(10, new CheckSandboxCommands(&client,

 "Paul", "OnPP", &model));

 taskQueue.run();

 io_service.run();

 }

}

GA 635900 Page 40 of 40

15. Appendix C

In the following the pseudo-code is shown as an example for test implementation for

failover testing on Sandbox Management Service.

//a set of initial conditions at starting of the service after crash

for (int testCase = 0; testCase != 16; ++testCase) {

 initTestCase();

 runTestCase(testCase);

 clearTestCase();

}

//single run of one initial condition

void runTestCase(int testCase) {

 bool requestTopicAvailable = testCase & 0x1;

 bool notificationTopicAvailable = testCase & 0x2;

 bool changeSetsTopicAvailable = testCase & 0x4;

 bool sandboxEntryAvailable = testCase & 0x8;

 if (requestTopicAvailable)

 topicsList->putValue(requestTopicName, requestTopicConfig);

 if (notificationTopicAvailable)

 topicsList->putValue(notificationTopicName, notificationTopicConfig);

 if (changeSetsTopicAvailable)

 topicsList->putValue(changeSetsTopicName, changeSetsTopicConfig);

 if (sandboxEntryAvailable)

 sandboxList->putValue(sandboxName, sandboxConfig);

 //start the service

 SandboxService srv;

 srv.start();

 sleep(0.1sec); // to establish connection to IL

 //run the service by issuing a request message

 mgmtRequestTopic->put(someKeyString, createSandboxRequest);

 sleep(0.1sec); // to implement all required steps

 //validate the state on IL

 ASSERT(topicsList->find(requestTopicName) == requestTopicConfig);

 ASSERT(topicsList->find(notificationTopicName) ==

notificationTopicConfig);

 ASSERT(topicsList->find(changeSetsTopicName) == changeSetsTopicConfig);

 ASSERT(sandboxList->find(sandboxName) == sandboxConfig);

 ASSERT(mgmtRequestTopic->find(someKeyString) == nil);

 ASSERT(mgmtNotificationTopic->find(someKeyString) == successfullRequest);

}

