

In2Rail

Project Title: INNOVATIVE INTELLIGENT RAIL

Starting date: 01/05/2015

Duration in months: 36

Call (part) identifier: H2020-MG-2014

Grant agreement no: 635900

Deliverable D8.2
Requirement for Interfaces

Due date of deliverable Month 27

Actual submission date 31-07-2017

Organisation name of lead contractor for this deliverable THA

Dissemination level PU

Revision FINAL

In2Rail Deliverable D8.2
Requirement for Interfaces

Authors

 Details of contribution

Author(s)
Thales (THA)
Jean-Yves Friant
Jean-Jacques Rodot

Coordination and Document
structure of D8.2
Contributions to Sections 1-7 and
Appendix 1
Review of contributions from other
partners

Contributor(s) Ansaldo STS (ASTS)
Gian Luigi Zanella
Matteo Pinasco

Contributions to Sections 1-7 and
Appendix 1
Review of contributions from other
partners

AZD Praha s.r.o. (AZD)
Martin Bojda
Michal Žemlička
Martin Růžička

Contributions to Sections 1-7 and
Appendix 1
Review of contributions from other
partners

Bombardier Transportation (BT)
Roland Kuhn
Martin Karlsson
Zbiewniew Dyksy

Contributions to Sections 1-7 and
Appendix 1
Review of contributions from other
partners

HaCon (HC)
Sandra Kempf
Rolf Gooßmann

Contributions to Sections 1-7 and
Appendix 1
Review of contributions from other
partners

Thales (THA)
Jean-Yves Friant
Jean-Jacques Rodot

Contributions to Sections 1-7 and
Appendix 1
Review of contributions from other
partners

 CAF Signalling (CAF)
Carlos Sicre Vara de Rey
Manuel Castro Viñas

Contributions to Sections 1-7 and
Appendix 1
Review of contributions from other
partners

 Siemens (SIE)
Stefan Wegele

Contributions to Sections 1-7 and
Appendix 1
Review of contributions from other
partners

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 3 of 47

Executive Summary

The overall aim of the S2R program/In2Rail (Lighthouse to S2R) is to set the foundation for a

resilient, standardized cost-efficient, high capacity System architecture and Data structure

for Traffic Management System linked with other Rail Business services.

The main innovation of this concept is to design a communication platform (Integration

Layer) using standardized data structures and processes managing the Communication/Data

exchange between different services and supporting TMS applications connected to other

multimodal operational systems.

WP8 specifies the Architecture, the data-structure model and Interfaces of the Integration

Layer based on the needs of the different internal and external “clients”. The availability of

various rail asset status data via one common communication layer will improve the

efficiency of the decision processes of all linked rail business services to meet their future

targets for capacity growth, reliability improvement and cost reduction.

This document provides the high-level requirements for interfaces needed for collaboration

of the TMS with other rail business services and the constraints exported from automated

communication processes and includes the tools to exchange data in a publish/subscribe

pattern to the Interfaces.

D8.1 (“Requirements for the Integration Layer”), D8.5 (“Requirements for the Application

Framework”), inputs from ongoing works to specify the Integration Layer (D8.3) and a set of

Use cases which are presented in this document form the base of requirements for the

Interface requirements that have been determined.

The analysis and the evaluation of a comprehensive set of requirements has been jointly

conducted from the partners of WP8.

This document is a key input to the proceeding activities of the X2RAIL-2, WP6 (“Traffic

Management Evolution”) and IMPACT-2 WP7 (“Integrated Mobility”) projects.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 4 of 47

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3

ABBREVIATIONS AND ACRONYMS 6

1 OBJECTIVES 8

2 BACKGROUND 10

3 BOUNDARIES 11

4 METHODOLOGY OF WORKS 12

4.1 EXECUTION OF WORKS 12

4.2 PRESENTATION OF REQUIREMENTS FOR INTERFACES OF THE

INTEGRATION LAYER 12

5 DEFINITION OF INTERFACES 13

5.1 OVERVIEW 13

5.2 INTERFACES OF THE INTEGRATION LAYER FOR BUSINESS SERVICES

AND APPLICATIONS 14

5.3 SERVICES, IMPLEMENTATIONS AND APPLICATIONS 14

6 INTERFACES IN A CANONICAL DATA MODEL 15

6.1 CANONICAL DATA MODEL (CDM) 15

6.2 PROCESS TO DEFINE A PATTERN 15

6.3 REQUIREMENTS FOR THE INTERFACES IMPOSED FROM CDM 16

6.3.1 Low-level interface IL-API and CDM 16

6.3.2 High-level interface (CDM-Mapping-API) 17

6.4 COMMAND PATTERN 18

6.4.1 Internal Command 18

6.4.2 Request of a Forecast 18

6.4.3 Temporary Restriction inserted by Operator 19

6.4.4 Command Pattern 19

6.5 TRIGGERS FOR WORKFLOW (BPM) AND ASSOCIATED SANDBOX 21

6.5.1 Short Term Requests 22

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 5 of 47

6.5.2 Modification of Production Timetable 23

6.6 ACCESS RIGHTS 24

6.6.1 Protection against disturbing applications 25

6.6.2 Protection against malicious applications 25

6.7 HISTORICAL DATA 25

6.7.1 Train Position Report 26

6.7.2 Pattern for Train Position Report 26

6.8 TRAFFIC STATUS FORE-CAST 26

6.8.1 Forecasted Train Position (near future) 27

6.8.2 Temporary Restriction 27

6.8.3 Pattern Traffic Status Forecast 27

6.9 EVENT MANAGEMENT 30

6.9.1 Logging a singular event 30

6.9.2 Logging a stateful event 31

6.9.3 Use case: Viewing and acknowledging open events for an object 31

6.9.4 Historical Events 31

6.9.5 Pattern for Event Management 32

6.10 GUI INTERACTIONS 33

6.10.1 Train selection in time-distance diagram and centring the train in topology view 34

6.10.2 Station is selected and corresponding CCTV view of station opens 34

6.10.3 Alarm is selected and corresponding object is shown 34

6.10.4 Pattern for GUI interactions 34

6.11 SESSIONS 36

6.11.1 Acquisition of AoR and hand-over of Station Control 36

6.11.2 Patterns for Sessions 36

7 CONCLUSION 39

APPENDIX 1: LOW LEVEL INTERFACE REQUIREMENTS FOR

IMDG (IL-API) 40

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 6 of 47

Abbreviations and acronyms

* Definition extract from Common Glossary of the [In2Rail D7.1] deliverable of In2Rail.

Term Description

AMS Asset Management System

AoR Area of Responsibilty

API Application Programming Interface

BPM Business Process Model (from BPMN but without the indication of notation)

BPMN Business Process Model and Notation

CDM Common Data Model : The static hierarchy of classes that represent data and
messages that can be exchanged between TMS modules and applications.

COTS Component Off The Shelf : A (often software) component readily available.
The original term means Commercial Off The Shelf, but is often extended (as
here) to free software.

DDS Data Distribution Service (Standard from OMG)

EU * European Union

ICD Interface Control Document

GUI Graphic User Interface

IM *

Infrastructure Manager: anybody or undertaking that is responsible for
establishing and maintaining railway infrastructure. This may also include the
management of infrastructure control and safety systems. The functions of
the infrastructure manager on a corridor or part of a corridor may be
allocated to different bodies or undertakings.

I²M *

Intelligent Mobility Management: information developed as a strategically
critical asset:

 A standardised approach to information management and dispatching
systems enabling an integrated Traffic Management System (TMS).

 An Information and Communication Technology (ICT) environment
supporting all transport operational systems with standardised interfaces
and with a plug and play framework for TMS applications.

An advanced asset information system with the ability to ‘now-cast and fore-
cast network asset statuses with the associated uncertainties from
heterogeneous data sources.

IMDG

In Memory Data Grid: A data structure entirely residing in RAM (Random
Access Memory) and distributed within a cluster of computers. The core of
the data structure is one of several dictionaries of values accessed from their
key.

OMG
Object Management Group (American association maintaining various
standards including UML, DDS and BPMN)

RU *
Railway Undertaking: bodies such as train operating companies and freight
operating companies, which are responsible for the operation of passenger
and freight trains.

TMS *
Traffic Management System: a traffic control-command and
supervision/management system, such as ERTMS in the railway sector.

UC Use Case

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 7 of 47

Term Description

UI User Interface

UML Unified Modelling Language

WP7
Work Package 7: System Engineering of Intelligent Mobility Management
(I²M) of In2Rail.

WP8
Work Package 8: Integration Layer of Intelligent Mobility Management (I²M)
of In2Rail.

Key/Value
Pair

Written with capital initials, it corresponds to an object (class instance) in the
CDM. By extension it also corresponds to a XPATH like string which
corresponds to the initial part of the XPATH like string of an actual object of
the CDM.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 8 of 47

1 Objectives

The overall objective of WP8 is to specify the architecture, the data-structure model and

interfaces of the Integration Layer based on the needs of the different internal and external

“clients”. The availability of “now” – and “forecasted” status data of various assets involved

in rail operations in one communication infrastructure (Integration Layer) available for the

different clients will improve the efficiency of the decision processes of all linked rail

business services to meet their future targets for capacity growth, reliability improvement

and cost reduction.

Figure 3.1: High Level system view

In2Rail is the lighthouse project to S2R IP2_ X2RAIL-2, WP6 (“Traffic Management

Evolution”) and S2R_CCA_IMPACT-2, WP7 (“Integrated Mobility”) and is the first milestone

in the roadmap of the design of a future Traffic Management System which is able to deliver

the contributions expected from the S2R program:

 OPEX and CAPEX reduction up to 10% *;

 Reduction of Delay Minutes up to 10% *;

 Increase of Capacity up to 10% *.

(* compared to a network with same size and complexity of traffic operated under current

conditions)

D8.2 will present the high-level requirements for the Interfaces of the Integration Layer to

other business services or functional applications. The main goal is to secure a defined

Communication/Data exchange between TMS applications and other multimodal

operational systems allowing the seamless exchange and integration of data.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 9 of 47

Deliverable 8.2 is the first step towards standardized Interfaces of the Integration Layer and

will be followed from proceeding activities in S2R_IP2_ X2RAIL-2, WP6 and

S2R_CCA_IMPACT-2, WP7. All results will be delivered to these proceeding projects.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 10 of 47

2 Background

The present document constitutes the first issue of Deliverable D8.2 “Requirements for

Interfaces” in the framework of the Project titled “Innovative Intelligent Rail” (Project

Acronym: In2Rail; Grant Agreement No 635900).

The overall aim of the S2R program/In2Rail (Lighthouse to S2R) is to set the foundation for a

resilient, standardized cost-efficient, high capacity system architecture and data structure

for a future Traffic Management System which is linked with other Rail Business services

through a single communication infrastructure.

WP8 together with activities in WP6, WP7, WP9 and WP10 fulfil the criteria to be a “Cross-

Cutting Activity” hence the I²M sub-project of In2Rail is the Lighthouse project to CCA WA4.2

“Integrated Mobility which integrates elements of S2R_IP2_TD9 with S2R_IP3 and S2R_IP5.

Works proposed for WP8 have been extracted from the S2R_IP2_TD9 “Traffic Management

Evolution” scope with the focus on the generic design parameters of the Integration Layer

and a “standardized” framework for applications, which allows for Plug-and-Play installation

of SW modules.

The proposed activities in WP8 Task 1 cover the evaluation and description of the overall

system architecture and data structure of the Integration Layer (D8.3), the interfaces to

other business services (D8.2) and to external clients via WEB-IF (D8.4)

D8.2 “Requirements for Interfaces” represents a key part in the concept of design of the

system architecture of the Integration Layer.

In2Rail WP7 Task 3 (“Proof of Concept”) has been originally part of WP8 but has been

assigned finally to WP7, but will use D8.2 as input for their design of the “Prototype-

Interfaces”.

WP7 Task1 “Requirement Analysis” focussed on integrating all the state of the art

requirements from recent and past customer and research projects for Traffic Management

as further input to WP8 and applicable requirements have been integrated into D8.2.

D8.1 (“Requirements for the Integration Layer”), D8.5 (“Requirements for the Application

Framework”) and the current state of the design process for D8.3 (Description of the

Integration Layer” are inputs to the definition of the Interface requirements.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 11 of 47

3 Boundaries

API Interfaces to integrate TMS modules into a framework are not in the scope of this

document and will be presented in D8.7 “Interface Control Document (ICD) for Application-

specific Interfaces”.

D8.4 “Interface Control Document for Integration Layer Interfaces, external/Web interfaces

and Dynamic Demand Service” will define the Interface to external clients via WEB including

for general Data exchange management and the support of “Dynamic Demand Service”

messages from external clients to Rail services via the same Interface.

The evaluation and presentation of requirements for Interfaces between Integration Layer

and Command and Control System (CCS) in the field (Interlocking, ATO Trackside, RBC and

other field elements) are not in the scope of WP8 and will be specified in the proceeding

project S2R_IP2_X2RAIL-2 in WP6.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 12 of 47

4 Methodology of Works

4.1 Execution of Works

All partners of WP8 have agreed to perform jointly all works allocated to the different tasks.

For each deliverable, a coordinator was nominated who was responsible for developing the

document structure which was then reviewed by all the partners and when finally agreed

was integrated into the contributions of the other partners to form the final document.

Deliverable D8.2 Requirement for Interfaces was coordinated by Thales.

Telephone conferences and periodic progress meetings were used to align the inputs and to

clarify difficult technical topics.

All partners provided assigned input and conducted reviews to all chapters of the document.

Telephone conferences and periodic progress meetings are held to align the inputs and to

clarify difficult technical topics.

4.2 Presentation of Requirements for Interfaces of the Integration Layer

For the description of the requirements of the Interfaces following approach has been

chosen:

 overview of the different interfaces described in this document (Chapter 5);

 Interaction of different Interfaces with the Integration Layer applying rules and

principles of a Canonical Data Model (Chapter 6);

 Low level Interface Requirements presented in a synthetic table format (Appendix 1).

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 13 of 47

5 Definition of Interfaces

5.1 Overview

Figure 5.1 shows the interfaces that are specified by the In2Rail platform, the different

components that must be provided by the In2Rail platform, and examples of modules and

applications connected to the platform.

Figure 5.1: Interfaces of the In2Rail platform

cmp Interfaces

Serv ices for AF modules

+ Scheduling

Serv ices for AF

modules::

Scheduling

Alarms

AFModulesContainer

TMS-API

TMSModule1

IL-Wrapper

IL-API

IL-Implementation

CDMLib

CDM-Mapping-API

External Application Module

DeploymentServ ice

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 14 of 47

5.2 Interfaces of the Integration Layer for Business Services and Applications

IL-API is the lowest level interface standardised by the In2Rail platform to access data in the

Data Warehouse.

CDM-Mapping-API is a high-level interface to modules, external applications and business

services to provide access to data which are available on the Integration Layer following the

rules and principles of the Common Data Model (structures, attributes, unions, etc).

TMS-API is an interface used by internal modules of the In2Rail platform.

5.3 Services, Implementations and Applications

Services of the AF module uses the IL-API (or if it is possible the CDM-Mapping-API) to

communicate with other modules. All services apply read/write/publish/subscribe

processes.

IL-Implementation is the implementation of the data warehouse in a specific In2Rail

platform deployment (COTS). There are no requirements on it, except that it should be

possible to develop a IL-Wrapper for this implementation.

IL-Wrapper is a plug-in to a specific IL-Implementation needed for the IL-API.

CDMLib is a component of In2Rail platform, which provides the CDM-Mapping-API based on

IL-API and the definition of the CDM. Its purposes are to serialise/deserialise data from an

object/attributes form to a binary encoded structure. This serialisation/deserialisation

process should be based on code generation or CDM description file dynamic inspection.

AFModuleContainer implements the TMS-API interface to provide the life cycle services to

internal modules of the In2Rail platform.

Components of the Services for AF modules are implementations of the different services of

the In2Rail platform.

TMSModule1 is one example of TMS module hosted in the In2Rail platform.

External Application Module is an example of an external application connected to the

In2Rail platform (for example, an AMS application).

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 15 of 47

6 Interfaces in a Canonical Data Model

6.1 Canonical Data Model (CDM)

A standardized Data Structure enables different services to share data in a publish/subscribe

pattern, thereby making full use of all available information. In addition, the various

applications with their specific data coexisting in the Integration Layer force a common

language - the Canonical Data Model (CDM).

There are several standardised data models already existing in the railway sector – RINF,

TAF/TAP TSI and ETCS language to name a few. What most of these have in common is that

they were designed to solve a specific problem. RINF describes the infrastructure, TAF/TAP

TSIs are for data exchange between RU and IM, ETCS defines data needed by an on-board

ATP. The result is that they have quite different views of the same reality. For example, all

three models need to refer to geographic positions in the railway topology. But they do it in

different ways, making them incompatible with each other. Identifying every position as a

distance from a balise group is very practical for the ATP, but useless as a basis for an

infrastructure register.

When defining the In2Rail/S2R CDM, the goal was to take a different approach. Start by a

structured break down of the entities of the railway system (including physical entities like

wayside assets and vehicles as well as logical entities, like time tables and traffic

restrictions). Then add to each type of entity whatever data attributes that may be of

interest to any application in the overall system context.

In this way, the data model will be structured according to real world objects and relations,

instead of to the needs of the foreseen services. Based on the CDM, data provider services

know where to place their output, and data consumers know where to find it.

Providers and consumers become loosely coupled, as they do not need any knowledge of

each other’s internal data representation. This simplifies maintaining and upgrading

applications independently. One application may “think” in RINF and another in ETCS, but

over the Integration layer, they both “speak” CDM.

The following chapters describe how the different types of interfaces are

implemented/connected to the CDM.

6.2 Process to define a Pattern

Use cases are selected and analysed for possible constraints. Then patterns are defined

which covers these constraints. The defined patterns will be used to validate the

requirements.

Note: Requirements reflect constraints in a formalized way

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 16 of 47

6.3 Requirements for the Interfaces imposed from CDM

6.3.1 Low-level interface IL-API and CDM

Requirements # Description

REQ_IRS_1 The In2Rail Platform permits applications and modules to access (read
or write) individual Key/Value Pair content in their binary serialised
form. The lowest level interface usable by module or application to
access Key/Value Pair content is the IL-API.

REQ_IRS_2 The In2Rail Platform allows applications and modules to create and
delete individual Key/Value Pair in the data grid. Type (class in CDM)
must be specified when a Key/Value Pair is created.

REQ_IRS_3 The binary serialised form of any Key/Value Pair contains the serialised
data of a complete Key/Value Pair including (recursively) all subparts,
with the special case that accessible Key/Value Pairs which are part of
the Key/Value Pair are serialised as an “address” which allows to
retrieve the actual content of the accessible Key/Value Pair.

REQ_IRS_4 The “address” (UUID or XPATH like string) of an accessible Key/Value
Pair B which is included in a Key/Value Pair A, should be stable in time
at least during the lifetime of both A and B. This means that as long as A
and B both exist (none of them has been deleted), then the address’s
(UUID or XPATH like string) validity is guaranteed.

REQ_IRS_5 The IL-API is transparent to the serialised data of Key/Value Pair
content. This means that in no treatment, the implementation of IL-API
need to deserialise the Key/Value Pair content.

REQ_IRS_6 The binary serialisation method (i.e. mapping between the CDM and
serialised data) should be the same for all type of Key/Value Pairs of the
CDM and for instances of Key/Value Pairs, within a single deployment of
the In2Rail Platform. This requirement does not need to be respected
when the serialisation is changed; in that case, and during a non-
production time, all persistent data can be de-serialised and re-
serialised using a different method, and during that process, the
serialisation method is not uniform.

REQ_IRS_7 Two different implementations of the In2Rail Platform can use different
serialisation methods. Bridges are then used to connect these In2Rail
PLATFORM implementations.

REQ_IRS_8 Serialisation method allows to represent at least the following basic
data types: Variable length string, 8 bits signed integer, 32 bits signed
integer, 128 UUID, Boolean, Simple (32 bits) and double (64 bits)
precision floating point (IEEE 754). The following basic types, unsigned
integer 8 bits, 32 bits and 64 bits can be used in the CDM to indicate
that the negative values are not authorised, but the MSB can never be
set. This means that they are serialised as their signed counterparts

Note: the subset of basic data types above is restricted to corresponds to what exists in all target languages,
especially Java which does not admit unsigned integers)

REQ_IRS_9 Serialisation method allows to serialise enumerated values.

REQ_IRS_10 Serialisation method allows to serialise structures (sequence of named
values of any serializable data type, which are called attributes).

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 17 of 47

Requirements # Description

REQ_IRS_11 Serialisation method allows to serialise unions (one value chosen
among several serializable data type). The chosen data type of each
value is part of the union serialisation, it does not require a separate
attribute.

REQ_IRS_12 Serialisation method allows to serialise sequence of data type
(serialisation of arrays). The serialisation method should handle in the
sequence the number of elements (not necessarily using a counter, stop
markers or other methods are possible too).

REQ_IRS_13 Serialisation method should allow the presence of non-valued data
(example, attribute not valued in a structure, or element not valued in a
sequence, but present to maintain indexes value).

REQ_IRS_14 Serialisation method should allow structure extension mechanism, at
least through the non-valued data attribute representation.

REQ_IRS_15 The In2Rail Platform allows modules to be notified of values changes
(change of the serialised data) of given Key/Value Pairs. Monitored
Key/Value Pairs can be specified individually or by filter (regular
expression on the key).

REQ_IRS_16 The In2Rail Platform allows modules to be notified of apparition and
suppression of Key/Value Pairs. The module indicates which are the
Key/Value Pair of interest either by the type (class in CDM) or by a
regular expression applied to the path of Key/Value Pair or by a
combination of both.

Table 6.1: Low-level interface IL-API and CDM

6.3.2 High-level interface (CDM-Mapping-API)

Requirements # Description

REQ_IRS_17 For the part which is dependent on the CDM, the implementation of the
CDM-Mapping-API should be generated (using a code generator) from
the file defining the CDM.

REQ_IRS_18 For each of the following language, C, C++, Java, C#, if a module of AF or
IL is using the CDM-Mapping-API, then the implementation must be
generated (using a code generator) from the XML file defining the CDM.
Writing implementation by hand of data structures defined by the CDM
is forbidden for these languages.

Note: This should be automatically the case for C++ and Java, if protobuf serialisation is
chosen, as these languages have a generator in the default implementation.

REQ_IRS_19 For each of the following languages, C, C++, Java, C#, the representation
of structures, enumeration, attributes of structures and their presence,
sequences, unions, basics data types and reference to other Key/Value
Pairs should be the same (but it can be different for two different
languages) for all implementation of the In2Rail Platform. The
representation should be specified by the document D8.4.

Note: Of course, the different representations for different languages concern the High Level API, note the
binary (serialised) content, which should ensure possibility of communication between modules/application.

Table 6.2: High-level interface(CDM-Mapping-API)

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 18 of 47

6.4 Command Pattern

The following use cases are (arbitrarily) chosen to evaluate the pattern for commands:

 one TMS module sends a command to another module (internal or external) for

immediate application;

 an external application (AMS) requests computation of forecasted data (number of

forecasted switch movements);

 an operator, through the external application of operator workstation, requests to

insert a temporary restriction.

6.4.1 Internal Command

This is the simplest case of a command. One module (module A) is sending a command and

waits for the command to complete. Another module (module B) sees that there is a

command to execute which is its responsibility, it executes the command, and stores the

result. Module A fetches the result, and once everything is finished, it cleans the data store.

6.4.2 Request of a Forecast

Differences to Use Case 8.4.1:

 Module A is an external application;

 The data should be kept for “some reasonable time”;

 There could be a special authorisation from an external application attached to the

request.

Defined process:

 Module A searches available forecast data for switch movements for a given date,

browsing the available data;

 Module A reads the available data (maybe there are rights and price attached to the

reading of already available data) or requests the computation of new data;

 Module B will compute the data, and make it available. These data are associated

with some expiry date. When the expiry date is reached, the data can be discarded

(by the data store or by IMDG wrapper);

 Module A reads the result. At some point, requests for computation or end of

computation or reading the result can be applied.

Note: “Querying available data” (1
st

 sub-case) and “Reading available data” (2
nd

 sub-case) are not directly

related to the pattern for commands.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 19 of 47

6.4.3 Temporary Restriction inserted by Operator

This use-case is a of the rapid reaction type, if there is no simulation of the impact in some

sandbox before applying the restriction. The operator requests an immediate insertion of a

restriction with minimal impact analysis. This use case can be decomposed with the

following high level steps:

 An operator places a command for inserting a temporary restriction from its GUI

(external application);

 Operator rights are checked (he has the rights in this use case) for this command;

 The result of the command is logged as operator action with some execution status

 The GUI application fetches the result of the command and presents it to the

operator.

What this use case demonstrates, is that rights are not attached only to applications but also

to operators and that commands are potentially logged differently.

6.4.4 Command Pattern

Each sub node (Key/Value Pair) of the Network root should have its own Key/Value Pair for

commands. In this Key/Value Pair, there can be groups of commands. At this level, the

different groups of commands are just logical groupings. Groups can be nested. In a group,

there can be inner groups or a command directory. A command directory represents the full

semantics of a command and contains all instances of this command.

In a command instance, there are several Key/Value Pairs:

 Key/Value Pair for parameters;

 Key/Value Pair for result;

 Key/Value Pair for execution status;

 Key/Value Pair for abortion request;

 Key/Value Pair for sandbox where command can be prepared (can be directly the

sandbox, or a reference to a sandbox being elsewhere in the data store).

Note: A sandbox has generally the meaning of a partially isolated environment where the actions carried inside
the sandbox have limited and controlled effect on the outside of the sandbox. For example, a sandboxed
environment can be used to test a future release, while being isolated from the actual production environment.
In this document, the term sandbox is used for a part of the data store which is isolated from the actual
production environment. Key/Value pairs have the same structure in the sandbox and in the actual production
data store, and sandboxes have each their own current time. Sandboxes can be used to prepare commands to
be applied “immediately” (their current time is now) or to prepare/evaluate commands to be applied sometimes
in the future (their current time is the planned time of application). When the sandbox is “applied”, it should be
completely applied (there is no partial application concept, or human interaction in the middle of the sandbox
application).

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 20 of 47

The Key/Value Pairs described above can be represented by the paths as shown in Table 6.3.

Path Content

/network/Infrastructure/cmd Path for all commands concerning infrastructure.
This path is NOT a key with value.

/network/Infrastructure/cmd/tempR
estriction

Path for all commands concerning temporary
restrictions. This path is NOT a key with value.

/network/Infrastructure/cmd/tempR
estriction/placeRestrictionImmediat
eley

Path for all the instances of commands to
immediately put a temporary restriction. This path is
NOT a key with value.

/network/Infrastructure/cmd/tempR
estriction/placeRestrictionImmediat
eley/<uuid>

Path for one instance of command

/network/Infrastructure/cmd/tempR
estriction/placeRestrictionImmediat
eley/<uuid>/parameters

Key/value for the parameters of one instance of
command

/network/Infrastructure/cmd/tempR
estriction/placeRestrictionImmediat
eley/<uuid>/result

Key/value for the result (or reference to the value?)
Having the actual value here allows keeping the
data until they expire easily.

/network/Infrastructure/cmd/tempR
estriction/placeRestrictionImmediat
eley/<uuid>/status

Key/value for the status of the command. Value
could at least be “preparation”, “submitted”,
“running”, “completed”, “failed”, “aborted”

/network/Infrastructure/cmd/tempR
estriction/placeRestrictionImmediat
eley/<uuid>/abortionRequest

This key/value is created by requester when it wants
to cancel the command

/network/Infrastructure/cmd/tempR
estriction/placeRestrictionImmediat
eley/<uuid>/sandox

This can be a path root for the sandbox or a
key/value with the uuid of a sandbox located
elsewhere.

Table 6.3: Paths representing Key/Value Pairs
Note: A pattern can be represented by a dedicated application/service. This service can also subscribe to the
issued commands and can update the status of information.

The following requirements on the low-level interface (applicable to the IL-API and CDM)

have been defined:

Requirements # Description

REQ_IRS_20 The In2Rail Platform permits applications and modules to issue
commands to other applications and modules without prior knowledge
of the module or application that will handle the command. The lowest
level interface usable by module or application to access commands is
the IL-API.

REQ_IRS_21 There can be several instances of the same command running at the
same time in the system. The interface gives access each of these
instances individually.

REQ_IRS_22 The IL-API allows querying all instances of a given command (type).

REQ_IRS_23 The IL-API allows creating new instance of command. A new command
is by default in “preparation” state.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 21 of 47

Requirements # Description

REQ_IRS_24 The status of each instance of command can be queried (and set)
individually. Status includes at least the following values: Preparation,
Submitted, Running, Completed, Failed and Aborted.

REQ_IRS_25 For each instance of command, CDM allows storing parameters
attached to a key, separate from the command’s other keys. The
parameters of each type of command are defined by the Canonical Data
Model.

REQ_IRS_26 The result of a command can be read/write independently (separate
key/value) from the rest of the command.

REQ_IRS_27 The result of a command is given an expiration date. The In2Rail
platform keeps the result in the data store at least until the expiration
date is reached or some module (issuer of the command) explicitly
removes the value of the result. After expiration date, the In2Rail
Platform should remove the expired result (and command) to limit
memory usage.

REQ_IRS_28 The requester of a command can also request to cancel the command
(abortion request). The module executing the command is NOT forced
to take abortion request into account.

REQ_IRS_29 A sandbox is by default attached to each command instance. The
sandbox contains data which can be required to run a BPM triggered
command and scenario study in the frame of the execution of the
command. The sandbox should be removed when the command is
complete (Completed, Failed, or Aborted).

REQ_IRS_30 For each command (type), access rights can be defined. Only module
and or Persons having the right access can issue the command.

Note: Access rights are configured via Topics.

REQ_IRS_31 When a module or person does not have the right access tries to issue a
command, the denied access is logged and the command is not issued.

Table 6.4: Command Pattern - Requirements on the low-level interface

6.5 Triggers for Workflow (BPM) and associated Sandbox

The workflow represents an oriented graph consisting of connected business activities and

their results. Figure 6.1 represents a workflow by means of a Petrinet in accordance with

ISO/IEC 15909-2:2011.

Figure 6.1: Example of a workflow specification

Activity 1 Activity result

1

Activity 2

Activity 3

Activity result

3

Activity result

2
Activity 4 Activity result

4

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 22 of 47

The sequence of an activity implemented depends on the result of the previous one and can

be concurrent (Activity 4 and Activity 2) or alternative (Activity 2 and Activity 3). Typically,

workflows involve cooperation of several persons on one task representing different steps of

modifications. The intermediate results of such modifications are not intended to be

published to the neighbour systems and sandboxes model is used to manage this part of the

workflow.

Following use-cases have been selected:

 Management of very short term request;

 Management of updates of train information provided by RU;

 Negotiations about train rerouting/cancellation due to major disturbances with RU;

 Concurrent modifications of the timetable with side effects to the neighbour areas.

6.5.1 Short Term Requests

A railway undertaking (RU) can require modifications of the current production timetable:

 Train path cancellation total or partially;

 Change of the train route (e.g. to join additional wagons/passenger cars);

 Change the schedule of a train route;

 Change planned connections between trains (e.g. to enable crew change);

 Request for a new trip.

The RU requests new slots to operate trains on the network. The impact on the actual

production timetable situation is analysed by an operator in a sandbox. The operator can

apply modifications in several cycles to the request of RU to evaluate the best result.

Figure 6.2: Workflow overview for short term requests from RU

RU issues a

change request

List of

requested

changes

Show modified

timetable in a

sandbox

Timetable in a

sandbox

Forecast and

conflict detection

Detected

conflicts Conflict resolution

List of

proposed

changes

Acceptance/

Rejection

Accept/

Reject

New Production

Timetable

Figure 8-Error! No text of specified style in document..1 Workflow overview for short term

requests from RU

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 23 of 47

6.5.2 Modification of Production Timetable

Typically, the country wide railway network is divided into areas of responsibility (AoR)

assigned to different operators. If one operator starts modification of trips inside of his area,

the consequences inevitably arrive at neighbouring areas, causing potential conflicts as

entrance times of the trains into the neighbour area and even their sequences may change.

Depending on the business processes of Infrastructure Managers (IM) the cooperation

between operators can be organized such that:

 Areas of responsibilities are virtually isolated – the neighbour modifications are

explicitly shown and require explicit application in the local AoR or;

 any modification of the timetable is done in a sandbox. Before the sandbox is

accepted, all the involved neighbours must acknowledge it.

Despite the different processes to manage changes of the production timetable “very short

term requests” shown in Figure 6.2 seem to be very similar.

 A Railway Untertaking (RU) requests a modification to the production timetable a

“change set” is prepared by an operator involving his AoR and;

 workflows are needed which allow “sandboxes” to be exchanged between involved

persons/systems.

This use case demonstrates that the CDM has to support efficient configurations of a

workflow/process and the monitoring of the workflow/process state by observing timings of

activities.

The table below shows the pattern needed to manage the necessary data involved in the

process. The implementation/location/path of the data will follow the rules and principles of

the CDM.

Path Content

/network/sandboxes Path containing sandboxes. They can be used
without involvement in workflows for e.g. for what-
if-analysis.

/network/requests Path containing further details about requests

/network/requests/issued Path containing a key-value pair representing some
object from Canonical model.

/network/ requests/workflow Path containing transitions in the workflow (which
activity when started and finished) as key-value-
pairs.

Note: The involved key-value-pairs shall be removed from the IL during a specified time interval starting after
the process/workflow is finished

Table 6.5: Pattern needed to manage the necessary data involved in the process

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 24 of 47

The following requirements on the low-level interface (applicable to the IL-API and CDM)

have been defined:

Requirements # Description

REQ_IRS_32 The In2Rail Platform permits to applications and modules to issue
change requests to other applications and modules without prior
knowledge of the module or application that will handle the change
request.

REQ_IRS_33 There can be several instances of the workflow running at the same
time in the system. The interface gives access each of these instances
individually.

REQ_IRS_34 The CDM allows access to the current state of all workflows.

REQ_IRS_35 The finished workflow is given an expiry date. The AL/IF keeps the
workflow intermediate states at least until the expiry date is reached or
some module (issuer of the command) explicitly removes the value of
the result. After the expiry date, the In2Rail Platform should remove the
expired data to limit memory usage.

REQ_IRS_36 The requester of a workflow can also request to cancel it (abortion
request). The module executing the command is NOT forced to take
abortion request into account.

REQ_IRS_37 A sandbox can be attached to different steps of the workflow either by
reference or by value. The sandbox should be removed when the
workflow is finished (Completed, Failed, or Aborted).

REQ_IRS_38 For each workflow type, access rights can be defined. Only applications
having the right access can issue read the state or contribute to the
workflow.

Table 6.6: Modification of Production Timetable - Requirements on the low-level interface

6.6 Access Rights

Under the access rights we define the right to read and to write to the data managed by the

Integration Layer. The Integration Layer shall manage the data in the form of key-value pairs,

where a value represents one object encoded by a serialisation method. The object itself can

represent a tree of further child-objects according to a composition relationship. As the

Integration Layer does not provide any validation support for the value-content and act as a

“black-box”, it is not possible to ensure the access rights to the single attributes inside of the

object in a value. The access right granularity in the Integration Layer is the value part in key-

value. The values are managed inside of Topics, where only specific types of object can be

published/subscribed. Therefore, the most appropriate point to define access rights is at the

level of a the Topic: each Application can be configured with read and/or write rights to

some Topics.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 25 of 47

6.6.1 Protection against disturbing applications

As soon as a TMS is configured with its business applications, the availability of the vital

functions can be violated by modules starting publishing on “wrong” Topics due to:

 bugs in the software;

 message errors;

 message does not correspond to object types specified for the Topic.

6.6.2 Protection against malicious applications

Inside of the TMS some commercially sensitive data are located which need to be protected

against malicious applications. To define the requirements following selection of “critical”

data has been chosen:

 Timetables and train consists of competing RU;

 Diagnostic data for the field equipment from different signalling system suppliers;

 Intermediate results of the root cause analysis for delay.

The following requirements on the low-level interface (applicable to the IL-API and CDM)

have been defined:

Requirements # Description

REQ_IRS_39 The In2Rail Platform permits to applications and modules to subscribe
to only configured Topics

REQ_IRS_40 The In2Rail Platform permits to applications and modules to publish to
only configured Topics

REQ_IRS_41 The In2Rail Platform permits to applications and modules to open their
own private Topics and configure access rights for other applications.

REQ_IRS_42 The In2Rail Platform support access rights for stream oriented and
multicast protocols.

REQ_IRS_43 The In2Rail Platform uses one combined API for getting access to the
data on IL and notifies the client application about trials of access
violation.

Table 6.7: Protection against malicious applications - Requirements on the low-level interface

Note: The In2Rail Platform will have to log all failed access trials into a central repository for debugging
purposes.

6.7 Historical Data

Under history we define past values for key-value pairs managed in a Topic.

The main objective of this functionality is to separate the life cycle of the information

between producers of information and subscribers.

The Topic is configured to indicate the amount/number of available historical patterns

embedded and new subscribers can read these historical data.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 26 of 47

6.7.1 Train Position Report

Most of the subscribers are interested in the history of train position e.g. for calculation of

the forecast or triggering announcements in passenger information system or to create the

“Time Distance Diagrams”

6.7.2 Pattern for Train Position Report

The API provided by the middleware can send the historical Data to the newly connected

client using the same API with “historical” timestamps in fast motion. The high level

differences of some available COTS products in terms of implementation of messaging of

Train Position Reports can be characterized as follows:

 DDS supports this feature directly;

 Hazelcast supports the lifetime of a key-value in maps. As an alternative, it provides a

RingBuffer structure, which can be configured with some size, which is the same as

history depth;

 Redis supports lists, so that the writer could keep the size of a list according to the

history depth. Redis provides an index-based access pattern to the list, so the client

could “get” only the last N values it is interested in.

The following requirements on the low-level interface (applicable to the IL-API and CDM)

have been defined:

Requirements # Description

REQ_IRS_44 A Topic shall be configurable with the number of historical samples
(History Depth). This number can be used to limit resource consumption
on the IL.

REQ_IRS_45 A subscriber shall be able to configure required History Depth, which
can be smaller than the Topic configuration.

REQ_IRS_46 The handling of the history shall not increase the API complexity to IL.

REQ_IRS_47 The IL shall support at least one historical Topic per cluster.

Table 6.8: Train Position Report - Requirements on the low-level interface

6.8 Traffic Status Fore-cast

The following use cases were (arbitrarily) chosen to evaluate the pattern for commands:

 One TMS module uses the continuously computed future state going from now to

the next 12 hours of each train positions, arrival times and other data used in the

Traffic Control process;

 An external application (AMS) request computation of forecasted data (number of

forecasted switch movements);

 An operator analyses the impact of inserting a temporary restriction.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 27 of 47

6.8.1 Forecasted Train Position (near future)

This use case corresponds to a TMS application module which needs continuously the fore-

casted position and delays of all trains for the near future to compute some global indicator

(average delay, average time of trains stopped out of station).

The forecasted train position is supposed to be always available. TMS applications use this

information together with actual and past position of trains to compute the fore-cast status.

That status information is used to update other applications.

Other types of objects/rail assets have a less continuous update model. For example,

switches move a few times an hour and use value change principles.

The “Client” can subscribe permanently to the topic representing the status of the

object/train of interest or subscribe only periodically to obtain the required data.

At each computation, the fore-cast data is updated and subscribed clients are notified and

updated.

6.8.2 Temporary Restriction

In this use case, an operator analyses the impact of a temporary restriction that would be

activated in two or three weeks. The operator creates a “scenario study” in a sandbox, set

the simulated time of the sandbox and then applies the restriction with the specified date in

the sandbox scenario. The operator continues then running some global command (e. g.

conflict detection) in his sandbox and displays the result. During the global command

execution, the sandbox is enriched with the computation results. For a scenario sandbox, the

result is kept alive as long as the sandbox exists. The date/time, for which the simulation is

supposed to create a forecast scenario is set by the operator. All existing data is available for

the simulation.

6.8.3 Pattern Traffic Status Forecast

To describe the pattern, this text uses the object referencing principles described in current

work on Canonical Data Model. It may need updating when the CDM is finalised.

From the above use cases, we can identify the following families of future status

representation:

 Continuous representation of future values: All values related to present time up to

the end of the specified “future” are continuously computed and available without

any period missing;

Note: The end of this “future” will be called present horizon or simply horizon if the context does not
require distinguishing the present horizon from a future horizon.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 28 of 47

 Event based representation of changes between present time and horizon: this event

based representation includes events that will arrives only once between now and

horizon;

 Potential sandboxes whose current time correspond to present time, with event

based and/or continuous representation until horizon;

 Commands requesting computation of some future value, this is sub case of

command pattern, potentially using a sandbox either around present or some

moment in future time;

 Sandboxes whose current time is corresponding to some moment in future time

(they have a simulated current time). These sandboxes have their own future horizon,

with event based and continuous future values.

To illustrate the possible representation of these concepts with key/values pairs, the text

and table below uses the example of train position for continuous values and switch position

for event based values.

Path Content

/network/TimeTable/Trains/Train/u
uid/Position

Key/value for the value of the actual (most recent
update) of a train position

/network/TimeTable/Trains/Train/u
uid/Position/Futures

path for all future positions of this train. This path is
NOT a key with value.

/network/TimeTable/Trains/Train/u
uid/Position/Futures/now-some-
time-in-future

Key/value for the list of sampled positions of this
train between now and some-time-in-future
(example now-22-10-2018-10:15:00). The sampling
time is some configuration data of the Position type.

/network/TimeTable/Trains/Train/u
uid/Position/Futures/time1-time2

Key/value for the list of sampled positions of this
train between two times in the future (example 22-
10-2018-10:15:00-22-10-2018-10:30:00). The
sampling time is some configuration data of the
Position type. This slicing is used to limit the size of
values as the now-some-time-in-future must be
updated very often for numbers of trains

/network/Infrastructure/Operation/
Track/Condition/Switches/uuid

Key/value pair for the present state of a switch

/network/Infrastructure/Operation/
Track/Condition/Switches/uuid/futu
res

Path for all the events forecasted between now and
horizon for this switch (uuid). This path is NOT a key
with value.

/network/Infrastructure/Operation/
Track/Condition/Switches/uuid/futu
res/time-in-future

Key/value for the forecasted state change of this
switch between present and horizon. Time-in-future
is a time representation like 22-10-2018-10:12:17
and corresponds to the forecasted time when the
event (state change) will occur.

/network/sandboxes/uuid/CurrentTi
me

Key/value for the current time to be used by a
sandbox whose current time is not corresponding to
present time

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 29 of 47

Path Content

/network/sandboxes/uuid/TimeTabl
e/Trains/Train/uuid/Position/Future
s/now-some-time-in-future

Key/value for the list of sampled positions of this
train between now and some-time-in-future
(example now-22-10-2035-10:15:00) in a studying
scenario around
/network/sandboxes/uuid/CurrentTime. The
sampling time is some configuration data of the
Position type.

Table 6.9: Example of train position for continuous values and switch position for event based values
Note: The proposed keys above do not mean that reading or subscribing to these keys is triggering the
computation. It just indicates the used key for storing data. If corresponding future data are published, the key
should be as indicated, so that subscribers are aware of the key they should subscribe in a regular way for all
implementations. The Key/Value Pair for future are computed normally based on BPM triggers (some may be
periodic) or commands.

The following requirements on the low-level interface (applicable to the IL-API and CDM)

have been defined:

Requirements # Description

REQ_IRS_48 In2Rail Platform permits to applications and modules to store and query
values and events between present time and a moving end of near
future called horizon. For each type of Key/Value Pair, the canonical
data model determines if the values are continuous or event typed.

REQ_IRS_49 For continuously forecasted value, configuration of In2Rail Platform
gives for each type of data the sample period (time elapsed between
two contiguous values) and the slice size (the maximum number of
samples in the same key/value pair for this data)

REQ_IRS_50 Extent of horizon should be configurable, either statically or
dynamically (at runtime). Dynamic configurability of horizon is not
mandatory.

REQ_IRS_51 For continuously forecasted value, the slices have fixed boundaries,
except the slice which starts at present time (now). Therefore, the first
slice, starting at present time, has a variable number of samples. Other
slices have fixed number of samples (for the same type of data).
Modules can read/subscribe to/write whole slices but not part of slices
using the IL-API.

REQ_IRS_52 For event typed forecasted values, only change of values can be
read/subscribed to/written, and all events based forecasted value is
attached to a time when the value change is forecasted.

REQ_IRS_53 Continuous and event typed forecasted values can also exist in the
sandboxes whose current time is corresponding to present time.
Nevertheless, some command need to be issued to trigger their
computation and therefore their apparition in the data store.

REQ_IRS_54 It is possible to set the current time of a sandboxes to some moment in
the future. Their horizon is then moved accordingly. When attaching a
new moment to a sandbox, then all now-some-time future should be
invalidated/removed. This is not the responsibility of the In2Rail
platform to do so. It is the responsibility of the module which changes
the sandbox current time.

Table 6.10: Traffic Status Forecast - Requirements on the low-level interface

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 30 of 47

6.9 Event Management

Event logging is a central support function in the system, which has several purposes:

 Alerting users of significant technical and operational events;

 Record device behaviours over time, for statistical purposes;

 Aid in posterior analysis of incidents and unexpected situations;

 Trace application execution, for debugging purposes.

This chapter discusses the specific action of logging in response to an event that has

occurred. The term log event is used for the result of this action, i.e. the actual log entry.

The event may cause other actions from various applications, but that is outside the scope of

this chapter.

An event, in the sense of a trigger, happens at a specific point in time and can have a

duration which shall be logged. If the log event indicates an error condition in some

equipment, it is useful to know not only when the error condition was entered, but also if

the condition still persists, and eventually at what time the error was cleared. We define this

as a stateful log event, whereas the log event without duration is called a singular log event.

The following use cases are chosen for evaluating the pattern for log events and alarms.

 An application logs a singular event related to an object;

 An application logs a stateful event related to an object. Later, the application marks

the event as cleared/inactive;

 A responsible user views open events for an object, and acknowledges them;

 A user or an application requests a report over historical events.

6.9.1 Logging a singular event

Any application can log an event at any time. The receiver(s) of the log event need not be

known to the log source. Indeed, the source should make no assumptions of an action being

triggered by logging the event. Such actions must be explicitly called upon through other

interfaces.

A log event is an instance of a log event type. The log event type is a static definition, which

identifies and documents the nature of a log event. E.g. a log event type may have the

meaning “switch out of control”, while a log event (an instance of this type) means that a

specific switch has gone out of control at a specific time. Each application is free to maintain

its own set of log event types.

A log event is associated with a severity attribute, which governs how it is propagated and

presented. The severity is defined by the log event type, out of a fixed set of options.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 31 of 47

A log event will normally refer to an object, which is the “owner” of the event (the source of

the event or the entity mainly affected by it). The object can be any addressable resource in

the data set, e.g. a wayside object, a time tabled trip, a temporary restriction.

A log event may optionally carry a set of properties, providing additional information about

the log event. The type and significance of the properties is defined by the log event type.

E.g. for a log event type “user logged in”, a property may carry the name of the user.

A log event type may specify that events of this type require acknowledgment from a user. If

so, the logging application shall indicate the event as waiting for acknowledgment. See

further in 0.

An event is associated with a set of timestamps. Minimum for the time of event occurrence,

when applicable also for the time of user acknowledgment.

Any application can subscribe to logged events, optionally filtered on any of the event

attributes. This includes the “big data” system for asset status statistics, described in D9.2.

Hence, there is no explicit use case included here for that interface.

A log event may be configured (per log event type) to trigger a workflow. The execution of

the workflow is however not covered by this use case.

6.9.2 Logging a stateful event

This use case is identical to the previous, except that the logging application indicates the log

event as active. A log event, which is not active when logged, indicates a singular (“pulsed”)

event, e.g. “route request issued”. A log event, which is active when logged, represents a

stateful (“on/off”) event, e.g. “switch out of control”. The logging application is expected to

set a stateful log event to inactive when the condition causing the event is no longer at hand.

A stateful event is associated with an additional timestamp, for the time of deactivation.

6.9.3 Use case: Viewing and acknowledging open events for an object

A log event, which is either active or waiting for acknowledgment, is considered as an open

log event.

Through a UI application, a user with sufficient privileges in relation to a specific object shall

be able to retrieve all open log events owned by that object.

A user with sufficient privileges in relation to a specific object shall be able to reset the

“waiting for acknowledgement” attribute of any log event owned by that object. Privileges

for acknowledgment may differ from the privileges for viewing open events.

6.9.4 Historical Events

An application shall be able to retrieve all log events that are persisted by the IL, optionally

filtered on any of the log event attributes, e.g. for creating reports. It is up to the retrieving

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 32 of 47

application to implement sorting, grouping, joining, statistical calculations etc. on the

retrieved data.

6.9.5 Pattern for Event Management

The use cases above identifie two main classes for the data model:

 “LogEventType”, containing static definitions;

 “LogEvent”, created dynamically for each event instance and persisted for some time.

The “LogEventType” objects should be owned by the respective applications. For the

“LogEvent” objects, the situation is a little more complex. Open events should be accessible

through the entities owning them (the “object” attribute), which also controls their access

rights. But closed events (as well as open) should also be accessible globally, even after their

original owners have ceased to exist.

To handle this, an additional “EventLog” object is introduced, as a “co-owner” of the events.

In UML terms, the events are contained in the event log through composite aggregation,

while they are contained by their source objects through shared aggregation.

To illustrate the possible representation of these concepts with key/values pairs, see

examples in Table 6.11.

Path Content

/network/controlSystem/prod/appli
cations/uuid1/eventTypes/uuid2

A log event type definition for the application
“uuid1”

/network/controlSystem/eventLog The global event log. This path is NOT a key with
value.

/network/controlSystem/eventLog/e
vents/uuid3

A log event instance, accessed through the event log

/network/infrastructure/assets/swit
ches/uuid4/events/uuid3

The same log event, accessed through its owner
object

Table 6.11: Pattern for Event Management

The following requirements on the low-level interface (applicable to the IL-API and CDM)

have been defined:

Requirements # Description

REQ_IRS_55 It shall be possible for applications to publish new log event types
(EventType class of the CDM), defining the significance and severity of a
type of log event (Event class of the CDM).

REQ_IRS_56 It shall be possible for applications to log events, referencing a log event
type, an object (being any identifiable entity according to the CDM) and
optionally additional data.

REQ_IRS_57 It shall be possible for a logging system to specify if a log event shall be
persisted by the IL or not (Note: persistence should be avoided for low
severity log events, in order to avoid congestion).

REQ_IRS_58 It shall be possible for a logging system to specify a limited time to live
for a log event, after which it may be dropped by the In2Rail platform.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 33 of 47

Requirements # Description

REQ_IRS_59 It shall be possible to configure a system wide maximum time to live for
all log events.

REQ_IRS_60 An application which indicates a log event as active when logged, shall
set the log event as inactive when the condition causing the log event is
no longer at hand. This means that CDM should separate the properties
that can be modified and properties that cannot be modified after they
have been set.

REQ_IRS_61 A user shall be able to acknowledge a log event, if required according to
log event type data, subject to the user access rights in relation to the
object indicated in the log event. CDM should make it possible that the
application acknowledging the log event has no write access to the log
event itself (Acknowledgment and Event should be different classes in
CDM).

REQ_IRS_62 The time of creating and modifying a log event shall be recorded, as
close to the actual source of the event as possible. This means that
CDM should define, for each Event, a timestamp, which is different
from the timestamping provided by In2Rail platform for every
Key/Value Pair.

REQ_IRS_63 Applications shall be able to subscribe to logged events, optionally
filtered on a combination of log event attributes. The In2Rail Platform
shall forward incoming log events to relevant subscribers.

Table 6.12: Event Management- Requirements on the low-level interface

Applications shall be able to query the IL for previously logged events, optionally filtered on

a combination of log event attributes and time stamps. This includes filtering on object, state

and acknowledgement as described in use case “Logging a stateful event”.

6.10 GUI interactions

In a Traffic Management System, it is possible that several graphical user interfaces to co-

exist, which have been delivered by different suppliers. The Integration Layer is used to

connect the different GUIs with each other. For a smooth interaction between the GUIs,

information has to be sent between the user interfaces via the IL. In order to understand the

required interaction a few use cases are shown below which are used as a baseline in order

to specify patterns of user interface interaction.

The following use cases have been selected to evaluate a pattern for GUI interaction:

 Synchronize selected objects:

- A train is selected by double click in a view of one TMS graphical user interface
module and because of this the train is centered within another TMS GUI module.

- A station is made the current object by mouse double click in one GUI and because
of this, the corresponding CCTV view of the selected station is shown within
another TMS GUI modules

- An alarm is selected by keyboard and <Enter> key in the alarm view and the
corresponding object is shown in another view of a GUI module.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 34 of 47

6.10.1 Train selection in time-distance diagram and centring the train in topology view

A train or object is selected and the action is published via the IL. One or more user interface

modules may subscribe for this action and adapt their display depending on the type of

action and the corresponding object. The action itself is stateless.

6.10.2 Station is selected and corresponding CCTV view of station opens

A user double clicks with the mouse on a station in the topology view. The mouse action is

published and the subscribing module, in this case the CCTV view module, opens the CCTV

view of the corresponding station.

6.10.3 Alarm is selected and corresponding object is shown

The operator selects the alarm by keyboard or mouse and this action is published to the IL

with the corresponding object information.

6.10.4 Pattern for GUI interactions

The synchronisation of selected object views mostly involves required interaction between

graphical user interfaces. Consequentially, certain “Actions” should be exchanged between

the different GUI modules. A GUI action can be for example a selection of a train in one GUI

module.

The GUI actions of a GUI module are only interesting for other GUI modules and not for

other applications that contain for example the business logic. Hence, there is only a need

for a Key/Value Pair for GUI actions within the user interface part of the CDM. In principle,

references to all objects that can be selected and that are of interest for other user interface

modules shall be possible.

The Key/Value Pairs for GUI interaction shall be represented by paths like those shown in the

table below. The location of the data inside of canonical model (path) gives just a hint for

implementation.

Apart from object selection, more detail information on the current operation the operator

is working on could be interesting for other GUI in to optimize their internal layout (order of

menus, presenting some actions buttons in special areas…). For that, GUI modules will also

be able to publish/subscribe to a current Activity. The activity should be a class defined in

CDM and containing an activity name (at least). It is not imposed how other GUI should react

to a change of the current activity (internal layout may be unchanged), neither how is the

activity changed (it can be inferred from last issued command, some expert system,

depending on the operator profile or set manually by the operator).

Therefore, the scope of selections can be more or less wide. Selection can be limited to a

single view, or a single operator station. To simplify integration, we suppose that the view

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 35 of 47

should be used to represent global selection on a workstation. It means that is a kind of

virtual view.

Finally, it appeared that GUI may distinguish the selection (initiated by the operator) from

the highlighting (which can be initiated by the operator, but also by a change in the system

independent from operator): Example of highlighting could be that when a train is selected

and “monitored”, its next operational point is highlighted (automatically as the train moves).

As for selection, highlighting may be different for each view.

Path Content

/network/ViewControllers/uuid path for all Key/Value Pair concerning one
workstation (one ViewController per workstation).
This path is NOT a key with value.

/network/ViewControllers/uuid/Vie
ws[n]/CurrentActivity

path for the current activity on one view. Its content
is a CurrrentActivity object which may be used by
GUI modules to optimise the interface.

/network/ViewControllers/uuid/Vie
ws[n]/CurrentSelection

Path for an instance of a selection object (defined in
CDM). This object can contain an ordered list of keys
of objects, selection mode (mouse or keyboard),
weight of the selection (light, medium, strong, for
instance strong for double-click), as will be indicated
in the CDM object.

Table 6.13: Pattern for GUI interactions

The following requirements on the low-level interface (applicable to the IL-API and CDM)

have been defined:

Requirements # Description

REQ_IRS_64 The GUI applications shall be able to publish their activity on the
integration layer.

REQ_IRS_65 Applications shall be able to subscribe to activities. The IL shall forward
incoming activities to relevant subscriber.

REQ_IRS_66 In2Rail Platform permits to applications and modules to issue activities
without prior knowledge of the module or application that will handle
the action.

REQ_IRS_67 The activities shall not be persisted longer than GUI sessions.

REQ_IRS_68 There can be several instances of the same activity running at the same
time in the system (but not for the same workstation in the same view).
The interface gives access each of these instances individually.

REQ_IRS_69 The CDM allows querying all instances of a given activity (type).

REQ_IRS_70 The CDM allows creating new instance of activity.

REQ_IRS_71 For each activity (type), access rights can be defined. Only modules
having the right access can issue the action.

Table 6.14: GUI interactions- Requirements on the low-level interface

When a module does not have the right access, but attempts to issue an activity, the denied

access is logged and the action is not issued.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 36 of 47

6.11 Sessions

A Session is defined as a mechanism used to encompass sandboxes and reservations created

during operations. Sessions are held by session-owners and have a lifecycle and can be

voluntary or automatically deleted (after the expiry of associated watchdogs or the expiry of

work-shift) or can be handed-over to a different session-owner.

All sandboxes and reservations encompassed by a session follow the lifecycle of the

encompassing session.

Sandboxes hold copies of Topics that may be freely changed without impacts to current

operations. Changes done on sandbox Topics may be applied to original Topics, or discarded.

Reservations (aka locks) implement a mechanism that limits the access to TMS controlled

objects and functions. Reservations are set by applications based on authorization, roles and

rules associated with e.g. the end-users using the applications. How authorization is

implemented is not in the scope of this document and therefore would not described here.

6.11.1 Acquisition of AoR and hand-over of Station Control

In this high-level use case, two different actors are involved: the dispatcher, responsible to

secure the time table and to take operational decisions for the near future; and the Signaler,

responsible for local control of a station.

The dispatcher logs into the system and acquires its AoR and all the TMS resources and

functions related to the AoR are reserved in the context of the session associated to the

dispatcher.

At some point in time, the dispatcher needs to hand-over the control of a station to a

signaller. Following the national regulations, the dispatcher grants the full control to local

signaling system to the signaller. After hand-over, the reservations of the local signaling

system are moved from the dispatcher to the signaler: the signaler will have full control of

local signaling system, and the dispatcher will be unable to interfere with signaller activities.

6.11.2 Patterns for Sessions

The use case described above identifies three logical sections for the data model. A fourth

section for private Topics will be added.

The data model comprises:

 Meta data, containing the properties of the session itself;

 sandboxes, which can be implemented in different ways in the CDM;

 reservations holding a list of references;

 dynamically created private Topics.

The following table depicts one of the possible structuring in the data set.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 37 of 47

Path Content

/network/users/<uuid1>/sessions/<
uuid2>/meta/

Path for section containing metadata regarding
session management.

/network/users/<uuid1>/sessions/<
uuid2>/meta/SessionName

Key/value pair containing the session
name/description in plain text.

/network/users/<uuid1>/sessions/<
uuid2>/meta/StartTimestamp

Key/value pair containing the timestamp of session
start.

/network/users/<uuid1>/sessions/<
uuid2>/meta/ExpectedDuration

Key/value pair containing the timestamp of the
expected session end.

/network/users/<uuid1>/sessions/<
uuid2>/meta/WatchdogTimeout

Key/value pair containing the watchdog period. This
key is to be continuously refreshed by the owner of
the session in order to keep the session alived.

/network/users/<uuid1>/sessions/<
uuid2>/sandbox/<uuid3>/watchDog

Key/value pair containing the watchdog period. This
key is to be continuously refreshed by the owner of
the session in order to keep the session alive.

/network/users/<uuid1>/sessions/<
uuid2>/sandbox/<uuid3>/CurrentTi
me

Key/value pair for the current time to be used by a
sandbox which is not attached to present time.

/network/users/<uuid1>/sessions/<
uuid2>/sandbox/<uuid3>/TimeTable
/Trains/Train/uuid/Position/Futures/
now-some-time-in-future

Key/value pair for the list of sampled positions of
this train between now and some-time-in-future
(example now-22-10-2035-10:15:00) in a studying
scenario around
/network/user<uuid>/session<uuid>/sanbox<uuid>/
CurrentTime. The sampling time is some
configuration data of the Position type.

/network/users/<uuid1>/sessions/<
uuid2>/sandbox/<uuid>

Path for section containing the name of the
associated sandbox.
 If this path has no further sub-path, then it is a
reference to a sandbox stored in a predefined path
(e.g. /network/sandboxes).

/network/users/<uuid1>/sessions/<
uuid2>/reservations/<uuid3>/

Path for section containing data for a single
reservation.

/network/users/<uuid1>/sessions/<
uuid2>/reservations/<uuid3>/watch
Dog

Key/value pair containing the watchdog period. This
key is to be continuously refreshed by the owner of
the session in order to keep the reservation alive.

/network/users/<uuid1>/sessions/<
uuid2>/reservations/<uuid3>/nodeLi
st

Key/value pair containing the reference to
authorization Key/Value Pairs allocated in a
reserved area of the CDM (not described in this
deliverable).

/network/users/<uuid1>/sessions/<
uuid3>/privateTopics

Path containing data for a privateTopics.

/network/users/<uuid1>/sessions/<
uuid2>/privateTopics/<topicName>

Key/value pair containing the topic to be subscribed
to by other applications.

Table 6.15: Patterns for Sessions

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 38 of 47

The following requirements on the low-level interface (applicable to the IL-API and CDM)

have been defined:

Requirements # Description

REQ_IRS_72 It shall be possible for an application to start one or more sessions after
the application is authenticated by the IL.

REQ_IRS_73 Each session shall have a unique identifier which is univocally
associated to a specific user. In this context the term user means either
an application or an end user. The specific user is referred as the owner
of the session.

REQ_IRS_74 A set of reservations may be associated to a given session.

REQ_IRS_75 A set of sandboxes may be associated to a given session.

REQ_IRS_76 A set of private Topics to be subscribed to may be associated to a given
session.

REQ_IRS_77 Each session should have an expected duration after which the session
is forcibly closed and all of its related objects (e.g. reservations,
sandboxes, private Topics) are deleted. Expected duration may be
intentionally extended by application(s) before its expiration. Expected
duration may correspond, e.g., to the work shift.

REQ_IRS_78 Each session shall have its own watchdog to be refreshed by
application(s). On the expiry of the watchdog period the session is
forcibly closed and all of its related objects (e.g. reservations,
sandboxes, private Topics) are deleted.

REQ_IRS_79 The owner of a session may transfer the entire session to another
owner by starting a session hand-over; the transfer is completed by the
receiving owner upon starting a correspondent take-over.

REQ_IRS_80 The owner of a session may transfer part of reservations associated to
the session to another session (possibly owned by another user) by
starting a reservation hand-over; the transfer is completed by the
receiving owner upon starting a correspondent take-over.

REQ_IRS_81 The owner of a session may transfer part of sandboxes associated to
the session to another session (possibly owned by another user) by
starting a sandbox hand-over; the transfer is completed by the receiving
owner upon starting a correspondent take-over.

REQ_IRS_82 Each sandbox should have its own associated watchdog and expected
duration. If not, they shall inherit the ones from the encompassing
session.

REQ_IRS_83 Each reservation should have its own associated watchdog and
expected duration. If not, they shall inherit the ones from the
encompassing session.
Table 6.16: Sessions - Requirements on the low-level interface

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 39 of 47

7 Conclusion

The chosen method to select use cases, analyse them for possible constraints and formalise

them into requirements has been very successful in defining the requirements for the

Interfaces which are within the scope of this document.

The overall approach to apply a Canonical Data Model as the “Language of the Integration

Layer” has allowed the creation of the requirements for the Interfaces of the IL and the

pattern for the different use cases in an effective and unique way.

However, this document is a “living document” and will require periodical updates during

the lifetime of In2Rail, and the proceeding projects of the S2R program and will need to

incorporate evolving requirements triggered from the subsequent design works on the

Integration Layer.

The results of this activity will be integrated into the “Proof of Concept” activities under

In2Rail WP7 Task 3, which is in line with the use cases presented in this document.

The “manageable complexity” of the achieved results are supporting a “Standardisation” of

the Interfaces of the Integration Layer as soon as the Design of the Data Model and

Processes of the communication infrastructure are finalised and agreed within the railway

sector.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 40 of 47

Appendix 1: Low Level Interface Requirements for IMDG (IL-API)

Id Text Not necessary
because implied by

REQ_IRS_1 The In2Rail Platform permits applications and modules
to access (read or write) individual Key/Value Pair
content in their binary serialised form. The lowest level
interface usable by module or application to access
Key/Value Pair content is the IL-API.

REQ_IRS_2 The In2Rail Platform allows applications and modules
to create and delete individual Key/Value Pair in the
data grid. Type (class in CDM) must be specified when a
Key/Value Pair is created.

REQ_IRS_3 The binary serialised form of any Key/Value Pair
contains the serialised data of a complete Key/Value
Pair including (recursively) all subparts, with the special
case that accessible Key/Value Pairs which are part of
the Key/Value Pair are serialised as an “address” which
allows to retrieve the actual content of the accessible
Key/Value Pair.

REQ_IRS_4 The “address” (UUID or XPATH like string) of an
accessible Key/Value Pair B which is included in a
Key/Value Pair A, should be stable in time at least
during the lifetime of both A and B. This means that as
long as A and B both exist (none of them has been
deleted), then the address’s (UUID or XPATH like string)
validity is guaranteed.

REQ_IRS_5 The IL-API is transparent to the serialised data of
Key/Value Pair content. This means that in no
treatment, the implementation of IL-API need to
deserialise the Key/Value Pair content.

REQ_IRS_6 The binary serialisation method (i.e. mapping between
the CDM and serialised data) should be the same for all
type of Key/Value Pairs of the CDM and for instances of
Key/Value Pairs, within a single deployment of the
In2Rail Platform. This requirement does not need to be
respected when the serialisation is changed; in that
case, and during a non-production time, all persistent
data can be de-serialised and re-serialised using a
different method, and during that process, the
serialisation method is not uniform.

REQ_IRS_7 Two different implementations of the In2Rail Platform
can use different serialisation methods. Bridges are
then used to connect these In2Rail PLATFORM
implementations.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 41 of 47

Id Text Not necessary
because implied by

REQ_IRS_8 Serialisation method allows to represent at least the
following basic data types: Variable length string, 8 bits
signed integer, 32 bits signed integer, 128 UUID,
Boolean, Simple (32 bits) and double (64 bits) precision
floating point (IEEE 754). The following basic types,
unsigned integer 8 bits, 32 bits and 64 bits can be used
in the CDM to indicate that the negative values are not
authorised, but the MSB can never be set. This means
that they are serialised as their signed counterparts.

REQ_IRS_9 Serialisation method allows to serialise enumerated
values.

REQ_IRS_10 Serialisation method allows to serialise structures
(sequence of named values of any serializable data
type, which are called attributes).

REQ_IRS_11 Serialisation method allows to serialise unions (one
value chosen among several serializable data type). The
chosen data type of each value is part of the union
serialisation, it does not require a separate attribute.

REQ_IRS_12 Serialisation method allows to serialise sequence of
data type (serialisation of arrays). The serialisation
method should handle in the sequence the number of
elements (not necessarily using a counter, stop
markers or other methods are possible too).

REQ_IRS_13 Serialisation method should allow the presence of non-
valued data (example, attribute not valued in a
structure, or element not valued in a sequence, but
present to maintain indexes value).

REQ_IRS_14 Serialisation method should allow structure extension
mechanism, at least through the non-valued data
attribute representation.

REQ_IRS_15 The In2Rail Platform allows modules to be notified of
values changes (change of the serialised data) of given
Key/Value Pairs. Monitored Key/Value Pairs can be
specified individually or by filter (regular expression on
the key).

REQ_IRS_16 The In2Rail Platform allows modules to be notified of
apparition and suppression of Key/Value Pairs. The
module indicates which are the Key/Value Pair of
interest either by the type (class in CDM) or by a
regular expression applied to the path of Key/Value
Pair or by a combination of both.

REQ_IRS_20 The In2Rail Platform permits applications and modules
to issue commands to other applications and modules
without prior knowledge of the module or application
that will handle the command. The lowest level

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 42 of 47

Id Text Not necessary
because implied by

interface usable by module or application to access
commands is the IL-API.

REQ_IRS_21 There can be several instances of the same command
running at the same time in the system. The interface
gives access each of these instances individually.

REQ_IRS_22 The IL-API allows querying all instances of a given
command (type).

REQ_IRS_23 The IL-API allows creating new instance of command. A
new command is by default in “preparation” state.

REQ_IRS_24 The status of each instance of command can be
queried (and set) individually. Status includes at least
the following values: Preparation, Submitted, Running,
Completed, Failed and Aborted.

REQ_IRS_25 For each instance of command, CDM allows storing
parameters attached to a key, separate from the
command’s other keys. The parameters of each type of
command are defined by the Canonical Data Model.

REQ_IRS_26 The result of a command can be read/write
independently (separate key/value) from the rest of
the command.

REQ_IRS_27 The result of a command is given an expiration date.
The In2Rail platform keeps the result in the data store
at least until the expiration date is reached or some
module (issuer of the command) explicitly removes the
value of the result. After expiration date, the In2Rail
Platform should remove the expired result (and
command) to limit memory usage.

REQ_IRS_28 The requester of a command can also request to cancel
the command (abortion request). The module
executing the command is NOT forced to take abortion
request into account.

REQ_IRS_29 A sandbox is by default attached to each command
instance. The sandbox contains data which can be
required to run a BPM triggered command and
scenario study in the frame of the execution of the
command. The sandbox should be removed when the
command is complete (Completed, Failed, or Aborted).

REQ_IRS_30 For each command (type), access rights can be defined.
Only module and or Persons having the right access can
issue the command.

REQ_IRS_31 When a module or person does not have the right
access tries to issue a command, the denied access is
logged and the command is not issued.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 43 of 47

Id Text Not necessary
because implied by

REQ_IRS_32 The In2Rail Platform permits to applications and
modules to issue change requests to other applications
and modules without prior knowledge of the module or
application that will handle the change request.

REQ_IRS_20

REQ_IRS_33 There can be several instances of the workflow running
at the same time in the system. The interface gives
access each of these instances individually.

REQ_IRS_34 The CDM allows access to the current state of all
workflows.

REQ_IRS_35 The finished workflow is given an expiry date. The AL/IF
keeps the workflow intermediate states at least until
the expiry date is reached or some module (issuer of
the command) explicitly removes the value of the
result. After the expiry date, the In2Rail Platform
should remove the expired data to limit memory usage.

REQ_IRS_36

The requester of a workflow can also request to cancel
it (abortion request). The module executing the
command is NOT forced to take abortion request into
account.

REQ_IRS_37 A sandbox can be attached to different steps of the
workflow either by reference or by value. The sandbox
should be removed when the workflow is finished
(Completed, Failed, or Aborted).

REQ_IRS_38 For each workflow type, access rights can be defined.
Only applications having the right access can issue read
the state or contribute to the workflow.

REQ_IRS_39 The In2Rail Platform permits to applications and
modules to subscribe to only configured Topics

REQ_IRS_40 The In2Rail Platform permits to applications and
modules to publish to only configured Topics

REQ_IRS_41 The In2Rail Platform permits to applications and
modules to open their own private Topics and
configure access rights for other applications.

REQ_IRS_42 The In2Rail Platform support access rights for stream
oriented and multicast protocols.

REQ_IRS_43 The In2Rail Platform uses one combined API for getting
access to the data on IL and notifies the client
application about trials of access violation.

REQ_IRS_44 A Topic shall be configurable with the number of
historical samples (History Depth). This number can be
used to limit resource consumption on the IL.

REQ_IRS_45 A subscriber shall be able to configure required History
Depth, which can be smaller than the Topic
configuration.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 44 of 47

Id Text Not necessary
because implied by

REQ_IRS_46 The handling of the history shall not increase the API
complexity to IL.

REQ_IRS_47 The IL shall support at least one historical Topic per
cluster.

REQ_IRS_48 The In2Rail Platform permits to applications and
modules to store and query values and events between
present time and a moving end of near future called
horizon. For each type of Key/Value Pair, the canonical
data model determines if the values are continuous or
event typed.

REQ_IRS_49 For continuously forecasted value, configuration of
In2Rail Platform gives for each type of data the sample
period (time elapsed between two contiguous values)
and the slice size (the maximum number of samples in
the same key/value pair for this data)

REQ_IRS_50 Extent of horizon should be configurable, either
statically or dynamically (at runtime). Dynamic
configurability of horizon is not mandatory.

REQ_IRS_51 For continuously forecasted value, the slices have fixed
boundaries, except the slice which starts at present
time (now). Therefore, the first slice, starting at present
time, has a variable number of samples. Other slices
have fixed number of samples (for the same type of
data). Modules can read/subscribe to/write whole
slices but not part of slices using the IL-API.

REQ_IRS_52 For event typed forecasted values, only change of
values can be read/subscribed to/written, and all
events based forecasted value is attached to a time
when the value change is forecasted.

REQ_IRS_53 Continuous and event typed forecasted values can also
exist in the sandboxes whose current time is
corresponding to present time. Nevertheless, some
command need to be issued to trigger their
computation and therefore their apparition in the data
store.

REQ_IRS_54 It is possible to set the current time of a sandboxes to
some moment in the future. Their horizon is then
moved accordingly. When attaching a new moment to
a sandbox, then all now-some-time future should be
invalidated/removed. This is not the responsibility of
the In2Rail platform to do so. It is the responsibility of
the module which changes the sandbox current time.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 45 of 47

Id Text Not necessary
because implied by

REQ_IRS_55 It shall be possible for applications to publish new log
event types (EventType class of the CDM), defining the
significance and severity of a type of log event (Event
class of the CDM).

REQ_IRS_56 It shall be possible for applications to log events,
referencing a log event type, an object (being any
identifiable entity according to the CDM) and
optionally additional data.

REQ_IRS_57 It shall be possible for a logging system to specify if a
log event shall be persisted by the IL or not (Note:
persistence should be avoided for low severity log
events, in order to avoid congestion).

REQ_IRS_58 It shall be possible for a logging system to specify a
limited time to live for a log event, after which it may
be dropped by the In2Rail platform

REQ_IRS_59 It shall be possible to configure a system wide
maximum time to live for all log events.

REQ_IRS_60 An application which indicates a log event as active
when logged, shall set the log event as inactive when
the condition causing the log event is no longer at
hand. This means that CDM should separate the
properties that can be modified and properties that
cannot be modified after they have been set.

REQ_IRS_61 A user shall be able to acknowledge a log event, if
required according to log event type data, subject to
the user access rights in relation to the object indicated
in the log event. CDM should make it possible that the
application acknowledging the log event has no write
access to the log event itself (Acknowledgment and
Event should be different classes in CDM).

REQ_IRS_62 The time of creating and modifying a log event shall be
recorded, as close to the actual source of the event as
possible. This means that CDM should define, for each
Event, a timestamp, which is different from the
timestamping provided by In2Rail platform for every
Key/Value Pair.

REQ_IRS_63 Applications shall be able to subscribe to logged
events, optionally filtered on a combination of log
event attributes. The In2Rail Platform shall forward
incoming log events to relevant subscribers.

REQ_IRS_64 The GUI applications shall be able to publish their
activity on the integration layer.

REQ_IRS_1
REQ_IRS_2

REQ_IRS_65 Applications shall be able to subscribe to activities. The
IL shall forward incoming activities to relevant
subscriber.

REQ_IRS_15

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 46 of 47

Id Text Not necessary
because implied by

REQ_IRS_66 The In2Rail Platform permits to applications and
modules to issue activities without prior knowledge of
the module or application that will handle the action.

REQ_IRS_67 The activities shall not be persisted longer than GUI
sessions.

REQ_IRS_68 There can be several instances of the same activity
running at the same time in the system (but not for the
same workstation in the same view). The interface
gives access each of these instances individually.

REQ_IRS_69 The CDM allows querying all instances of a given
activity (type).

REQ_IRS_70 The CDM allows creating new instance of activity. REQ_IRS_2

REQ_IRS_71 For each activity (type), access rights can be defined.
Only modules having the right access can issue the
action.

REQ_IRS_72 It shall be possible for an application to start one or
more sessions after the application is authenticated by
the IL.

REQ_IRS_73 Each session shall have a unique identifier which is
univocally associated to a specific user. In this context
the term user means either an application or an end
user. The specific user is referred as the owner of the
session.

REQ_IRS_74 A set of reservations may be associated to a given
session.

REQ_IRS_75 A set of sandboxes may be associated to a given
session.

REQ_IRS_76 A set of private Topics to be subscribed to may be
associated to a given session.

REQ_IRS_77 Each session should have an expected duration after
which the session is forcibly closed and all of its related
objects (e.g. reservations, sandboxes, private Topics)
are deleted. Expected duration may be intentionally
extended by application(s) before its expiration.
Expected duration may correspond, e.g., to the work
shift.

REQ_IRS_78 Each session shall have its own watchdog to be
refreshed by application(s). On the expiry of the
watchdog period the session is forcibly closed and all of
its related objects (e.g. reservations, sandboxes,
private Topics) are deleted.

REQ_IRS_79 The owner of a session may transfer the entire session
to another owner by starting a session hand-over; the
transfer is completed by the receiving owner upon
starting a correspondent take-over.

In2Rail Deliverable D8.2
 Requirement for Interfaces

GA 635900 Page 47 of 47

Id Text Not necessary
because implied by

REQ_IRS_80 The owner of a session may transfer part of
reservations associated to the session to another
session (possibly owned by another user) by starting a
reservation hand-over; the transfer is completed by the
receiving owner upon starting a correspondent take-
over.

REQ_IRS_81 The owner of a session may transfer part of sandboxes
associated to the session to another session (possibly
owned by another user) by starting a sandbox hand-
over; the transfer is completed by the receiving owner
upon starting a correspondent take-over.

REQ_IRS_82 Each sandbox should have its own associated watchdog
and expected duration. If not, they shall inherit the
ones from the encompassing session.

REQ_IRS_83 Each reservation should have its own associated
watchdog and expected duration. If not, they shall
inherit the ones from the encompassing session.

